
Page 1 of 79

 NPR 7150.2B

NASA
Procedural
Requirements

NPR 7150.2B
Effective Date: November 19, 2014

Expiration Date: November 19, 2019

Subject: NASA Software Engineering Requirements

Responsible Office: Office of the Chief Engineer

Page 2 of 79

 NPR 7150.2B

Table of Contents

Preface
P.1 Purpose
P.2 Applicability
P.3 Authority
P.4 Applicable Documents and Forms
P.5 Measurement/Verification
P.6 Cancellation

Chapter 1. Introduction
1.1 Overview
1.2 Hierarchy of NASA Software-Related Documents
1.3 Document Structure

Chapter 2. Responsibilities
2.1 Roles and Responsibilities
2.2 Principles Related to Tailoring Requirements

Chapter 3. Software Management Requirements
3.1 Software Life cycle Planning
3.2 Software Cost Estimation
3.3 Software Schedules
3.4 Software Project Specific Training
3.5 Software Classification and Planning Assessments
3.6 Software Assurance and Software IV&V
3.7 Safety-critical Software
3.8 Automatic Generation of Software Source Code
3.9 Use of Commercial, Government, Legacy, Heritage, and Modified Off-the-Shelf Software
3.10 Software Verification and Validation
3.11 Software Development Processes
3.12 Software Acquisition
3.13 Software Monitoring
3.14 Software Reuse
3.15 Open Source Software
3.16 Software Security

Chapter 4. Software Engineering (Life-Cycle) Requirements
4.1 Software Requirements
4.2 Software Architecture
4.3 Software Design
4.4 Software Implementation
4.5 Software Testing
4.6 Software Operations, Maintenance, and Retirement

http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter1
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter1
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter3
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter3

Page 3 of 79

 NPR 7150.2B

Chapter 5. Supporting Software Life-Cycle Requirements
5.1 Software Configuration Management
5.2 Software Risk Management
5.3 Software Peer Reviews/Inspections
5.4 Software Measurement
5.5 Software Best Practices
5.6 Software Training

Chapter 6. Recommended Software Documentation Contents

Appendix A. Definitions
Appendix B. Acronyms
Appendix C. Requirements Mapping Matrix
Appendix D. Software Classifications
Appendix E. References

http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter4
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter4
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter5
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=Chapter5
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=AppendixA
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=AppendixA
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=AppendixB
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=AppendixB
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=AppendixD
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_0002_&page_name=AppendixD

Page 4 of 79

 NPR 7150.2B

List of Figures

Figure 1-1 NASA Software Classification Structure
Figure 1-2 Relationships of Governing Software Documents

Page 5 of 79

 NPR 7150.2B

Preface

P.1 Purpose

Software engineering is a core capability and a key enabling technology for NASA's missions and
supporting infrastructure. This directive establishes the engineering requirements for software
acquisition, development, maintenance, retirement, operations, and management consistent with
the governance model contained in NASA Policy Directive (NPD) 1000.0, NASA Governance
and Strategic Management Handbook. This NASA Procedural Requirements (NPR) supports the
implementation of the NASA Policy Directive (NPD) 7120.4.

P.2 Applicability

a. This directive is applicable to NASA Headquarters and NASA Centers, including Component
Facilities and Technical and Service Support Centers. This language applies to the Jet Propulsion
Laboratory (JPL), other contractors, grant recipients, or parties to agreements only to the extent
specified or referenced in the appropriate contracts, grants, or agreements.

Note: The above statement alone is not sufficient to stipulate requirements for the contractor,
grant recipient, or agreement. This directive provides requirements for NASA contracts, grant
recipients, or agreements to the responsible NASA project managers and contracting officers
that are made mandatory through contract clauses, specifications, or statements of work
(SOWs) in conformance with the NASA Federal Acquisition Regulation (FAR) Supplement or
by stipulating in the contracts, grants, or agreements which of the NPR requirements apply.

b. This directive applies to software development, maintenance, retirement, operations,
management, acquisition, and assurance activities. The requirements of this directive cover all
software created, acquired, or maintained by or for NASA and apply to all of the Agency’s
investment areas containing software systems and subsystems. The applicability of these
requirements to specific systems and subsystems within the Agency’s investment areas, programs,
and projects is determined through the use of the NASA-wide definition of software classes in
Appendix D, in conjunction with the Requirements Mapping and Compliance Matrix in
Appendix C. Some projects may contain multiple systems and subsystems having different
software classes. Using the Requirements Mapping and Compliance Matrix, the applicable
requirements and their associated rigor are adapted according to the classification and safety
criticality of the software. Figure 1-1 shows the NASA software classification structure.

Page 6 of 79

 NPR 7150.2B

Figure 1-1 NASA Software Classification Structure

c. This directive is not retroactively applicable to software development, maintenance, operations,
management, acquisition, and assurance activities started before September 27, 2004 (i.e., existing
systems and subsystems containing software for the International Space Station, Hubble, Chandra,
etc.).

d. This directive does not supersede more stringent requirements imposed by individual NASA
organizations and other Federal Government agencies.

e. In this directive, all mandatory actions (i.e., requirements) are denoted by statements containing
the term “shall,” followed by a software engineering (SWE) requirement number. The terms
“may” or “can” denote discretionary privilege or permission, “should” denotes a good practice and

Page 7 of 79

 NPR 7150.2B

is recommended but not required, “will” denotes expected outcome, and “are/is” denotes
descriptive material.

f. In this directive, “software engineering” is defined as the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of software,
i.e., the application of engineering to software.

g. In this directive, “software” is defined as the computer programs, procedures, scripts, rules, and
associated documentation and data pertaining to the development and operation of a computer
system. This definition applies to software developed by NASA, software developed for NASA,
software maintained by or for NASA, commercial off-the-shelf (COTS) software, government off-
the-shelf (GOTS) software, modified off-the-shelf (MOTS) software, reused software, auto-
generated code, embedded software, the software executed on processors embedded in
programmable logic devices (see NASA-HDBK-4008, Programmable Logic Devices (PLD)
Handbook), legacy, heritage, and open-source software components.

h. In this directive, all document citations are assumed to be the latest version unless otherwise
noted.

P.3 Authority

a. The National Aeronautics and Space Act, as amended, 51 U.S.C. § 20113(a).

b. NPD 1000.0, NASA Governance and Strategic Management Handbook.

c. NPD 1000.3, The NASA Organization.

d. NPD 1000.5, Policy for NASA Acquisition.

e. NPD 7120.4, NASA Engineering and Program/Project Management Policy.

P.4 Applicable Documents

a. NPD 1200.1, NASA Internal Control.

b. NPD 1210.2, NASA Surveys, Audits, and Reviews Policy.

c. NPD 2091.1, Inventions Made By Government Employees.

d. NPD 7120.6, Knowledge Policy on Programs and Projects.

e. NPR 2190.1, NASA Export Control Program.

f. NPR 2210.1, Release of NASA Software.

g. NPR 2800.1, Managing Information Technology.

Page 8 of 79

 NPR 7150.2B

h. NPR 2800.2, Electronic and Information Technology Accessibility.

i. NPR 2810.1, Security of Information Technology.

j. NPR 2830.1, NASA Enterprise Architecture Procedures.

k. NPR 2841.1, Identity, Credential, and Access Management.

l. NPR 7120.5, NASA Space Flight Program and Project Management Requirements.

m. NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and
Project Management Requirements.

n. NPR 7120.8, NASA Research and Technology Program and Project Management Requirements.

o. NPR 7120.9, NASA Product Data and Life-Cycle Management (PDLM) for Flight Programs and
Projects.

p. NPR 7120.10, Technical Standards for NASA Programs and Projects.

q. NPR 7123.1, NASA Systems Engineering Processes and Requirements.

r. NPR 8000.4, Agency Risk Management Procedural Requirements.

s. NPR 8705.2, Human-Rating Requirements for Space Systems.

t. NPR 8705.4, Risk Classification for NASA Payloads.

u. NPR 8715.3, NASA General Safety Program Requirements.

v. NPR 8735.1, Procedures for Exchanging Parts, Materials, Software, and Safety Problem Data
Utilizing the Government-Industry Data Exchange Program (GIDEP) and NASA Advisories.

w. NPR 8735.2, Management of Government Quality Assurance Functions for NASA Contracts.

x. NPR 9250.1, Property, Plant, and Equipment and Operating Materials and Supplies.

y. NASA-STD-8719.13, NASA Software Safety Standard.

z. NASA-STD-8739.8, Software Assurance Standard.

P.5 Measurement/Verification

Page 9 of 79

 NPR 7150.2B

Compliance with this document is verified by submission to responsible NASA officials of
the completed compliance matrix(ces), including any approved waivers and deviations (see
Appendix C) and by internal and external controls. Internal controls are consistent with processes
defined in NPD 1200.1, NASA Internal Control. Internal controls include surveys, audits, and
reviews conducted in accordance with NPD 1210.2, NASA Surveys, Audits, and Reviews Policy.
External controls may include external surveys, audits, and reporting or contractual requirements.

P.6 Cancellation

a. NPR 7150.2A, NASA Software Engineering Requirements, dated November 19, 2009.

b. NID 7150-1, NASA Interim Directive (NID): NASA Software Engineering Requirements,
dated December 16, 2013.

Page 10 of 79

 NPR 7150.2B

Chapter 1: Introduction

1.1 Overview

1.1.1 This directive imposes requirements on procedures, design considerations, activities, and
tasks used to acquire, develop, assure, and maintain software created and acquired by or for NASA
programs. This directive is a designed set of requirements for protecting the Agency's investment
in software engineering products and to fulfill its responsibility to the citizens of the United States.

1.1.2 The requirements in this directive have been extracted from industry standards and proven
NASA experience in software engineering. Centers and software developers will find that many of
the requirements are satisfied through programs, procedures, and processes that are in place.

1.1.3. The Agency makes significant investments in software engineering to support the Agency’s
investment areas: Space Flight, Aeronautics, Research and Technology, Information Technology
(IT), and Institutional Infrastructure. NASA ensures that programs, projects, systems, and
subsystems that use software follow a standard set of requirements. One of the goals of this
directive is to bring the Agency's engineering community together to optimize resources and
talents across Center boundaries. For engineers to effectively communicate and work seamlessly
among Centers, a common framework of generic requirements is needed. This directive fulfills
this need for the Agency within the discipline of software engineering.

1.1.4 This directive does not require a specific software life-cycle model; but where this
NPR refers to phases and milestone reviews in the software life-cycle, it uses the standard NASA
life-cycle models described in NPR 7120.5, NASA Space Flight Program and Project
Management Requirement; NPR 7120.7, NASA Information Technology and Institutional
Infrastructure Program and Project Management Requirements; and NPR 7120.8, NASA Research
and Technology Program and Project Management Requirements, as supported by milestone
reviews described in NPR 7123.1, NASA Systems Engineering Processes and Requirements.

1.1.5 The NASA Chief Engineer is committed to instituting and updating these requirements to
meet the Agency's current and future challenges in software engineering. Successful experiences
will be codified in updated versions of this directive after experience has been gained through its
use within the NASA software community, the collection of lessons learned from projects, and the
implementation records of the Engineering Technical Authorities.

1.2 Hierarchy of NASA Software-Related Documents

This section helps the reader understand the flow down of requirements with respect to software
created and acquired by or for NASA. Figure 1-2 shows the software engineering perspective of
the relationship between relevant documents. The shaded documents in the figure show documents
that primarily address software engineering policy and requirements. The text that follows the
figure provides a brief description of each type of document, listed according to its position in the
figure.

Page 11 of 79

 NPR 7150.2B

FIGURE 1-2 Relationships of Governing Software Documents

1.2.1 Higher Agency-Level Requirements

NPD 1000.0 is the highest ranking NASA directive. NPD 1000.0 sets forth the principles by
which NASA will manage the Agency, describes the means for doing so, and identifies the
specific requirements that drive NASA's strategic planning process, leading to products such as
the Strategic Plan and the Annual Performance and Accountability Report. NPD 1000.3, The
NASA Organization, defines the basic roles and responsibilities necessary to conduct the mission
and business of NASA. It is the official repository for defining NASA's organizational
architecture. NPD 1000.5 provides the overall policy framework of NASA's disciplined,
comprehensive strategic acquisition process with appropriate references to other key processes and
directives. This acquisition process complies with NASA obligations as a Federal agency and is
tailored to each of NASA's major areas of investment to ensure the efficient, effective use of the
resources entrusted to the Agency. In the event of a conflict among the top-level directives, the
information provided in the highest ranking directive takes precedence. In the event of conflict
among the top-level directives and one or more lower-level NPDs and/or NPRs, the information
provided in the top-level directive(s) takes precedence. These policies may include very high-level

Page 12 of 79

 NPR 7150.2B

requirements relevant to software and information technology that are elaborated in lower-level
policies and procedural requirements.

1.2.2 Agency-Level Software Policies and Requirements

NPD 7120.4, NASA Engineering and Program/Project Management Policy, is an overarching
document that establishes top-level policies for all software created, acquired, and maintained
by or for NASA, including COTS, GOTS, and MOTS software and open-source, embedded,
reused, legacy, and heritage software. This directive supports the implementation of NPD 7120.4.
NPR 7150.2 establishes the set of software engineering requirements established by the Agency
for software acquisition, development, maintenance, retirement, operations, and management. It
provides a set of software engineering requirements in generic terms to be applied throughout
NASA and its contractor community. Software engineering is a core capability and a key enabling
technology for NASA's missions and supporting infrastructure. Additional Agency-level project
management requirements (NPR 7120.5; NPD 7120.6, Knowledge Policy on Programs and
Projects; NPR 7120.7, Information Technology Requirements; NPR 7120.8; NPR 7120.9, NASA
Product Data and Life-Cycle Management (PDLM) for Flight Programs and Projects; and
NPR 7120.10, Technical Standards for NASA Programs and Projects); and systems engineering
requirements (NPR 7123.1) exist that influence and affect the software development activities on a
project. In the event of a conflict between an NPD and an NPR, the information provided in the
NPD takes precedence.

1.2.3 Agency-Level Multi-Center and Product Line Requirements (non-software specific)

These NPDs and NPRs elaborate, tailor, and in some cases add requirements to those above to
address the needs of major multi-Center projects, specific product lines, and specific focus areas.
Examples of representative NPRs in this category are NPR 8705.2, Human-Rating Requirements
for Space Systems; NPR 8715.3, NASA General Safety Program Requirements; and NPR 8735.2,
Management of Government Quality Assurance Functions for NASA Contracts.

1.2.4 NASA and Industry Software Standards and Guidebooks

NASA-preferred industry software standards and guidebooks and NASA software-related
standards and guidebooks are required when invoked by an NPD, NPR, Center-level directive,
contract clause, specification, or statement of work.

1.2.5 Center-Level Directives (related to software)

Center-level directives are developed by NASA Centers to document their local software policies,
requirements, and procedures. These directives are responsive to the higher-level requirements
while addressing the specific application areas and the Center's mission within the Agency. In the
event of a conflict between an NPD or NPR with a Center-level directive, the information
provided in the NPD or NPR takes precedence.

Page 13 of 79

 NPR 7150.2B

1.2.6 Government In-House Development

Government in-house software development policies and procedures are developed to provide
quality software products that fulfill the requirements passed down by the project. Government in-
house software development policies and procedures are typically designed to meet the needs of
the supported projects in an effective and efficient manner.

1.2.7 Contractor and Subcontractor Development

Policies and procedures are developed by contractors and subcontractors to provide quality
software products and to fulfill the requirements passed down through a contract by a customer.
Contractor and subcontractor policies and procedures are typically designed to satisfy different
customers in an effective, efficient manner.

1.3 Document Structure

a. Chapter 2 describes roles and responsibilities relevant to the requirements in this directive.

b. Chapter 3 establishes software management requirements.

c. Chapter 4 provides software engineering life-cycle requirements.

d. Chapter 5 provides supporting software life-cycle requirements.

e. Chapter 6 provides recommended software records content.

f. Appendix A provides definitions.

g. Appendix B provides acronyms used in this directive.

h. Appendix C contains the Requirements Mapping and Compliance Matrix.

i. Appendix D contains software classifications.

j. Appendix E contains software references for this directive.

Page 14 of 79

 NPR 7150.2B

Chapter 2. Responsibilities

Software engineering is a core capability and a key enabling technology necessary for the support
of NASA's Mission Directorates. Ensuring the quality, safety, and reliability of NASA software is
of paramount importance in achieving mission success. This chapter describes the responsibilities
for maintaining and advancing organizational capability in software engineering practices to
effectively meet the scientific and technological objectives of the Agency. It defines the roles and
responsibilities of key officials in the software engineering management process. The roles and
responsibilities of senior NASA management, along with fundamental principles of governance,
are defined in NPD 1000.0 and further described in NPD 1000.3. These requirements are
applicable to all NASA Centers. Specific software classification applicability, if any, for the
requirements in Chapter 2 is contained in the requirement wording. The majority of requirements
in Chapter 2 are not part of the Compliance Matrix in Appendix C. Any tailoring of requirements
designated in Chapter 2 can be approved by the appropriate engineering management per the
defined roles and responsibilities.

2.1 Roles and Responsibilities

2.1.1 The NASA Chief Engineer (CE)

The NASA CE establishes policy, oversight, and assessment of the NASA engineering and
program/project management processes; implements the Engineering Technical Authority process;
and serves as principal advisor to the Administrator and other senior officials on matters pertaining
to the technical capability and readiness of NASA programs and projects to execute according to
plans. The CE directs the NASA Engineering and Safety Center (NESC) and ensures that
programs/projects respond to requests from the NESC for data and information needed to make
independent technical assessments and then respond to NESC assessments. The CE leads the
mission and program/project performance assessment for the Baseline Performance Review (BPR);
ensures that space asset protection functional support is provided to NASA missions and
management, including at a minimum, preparation of program threat summaries and project
protection plans; and co-chairs the Safety and Mission Success Review (SMSR) with the Office of
Safety and Mission Assurance (OSMA).

2.1.1.1 The NASA CE shall lead, maintain, and fund a NASA Software Engineering Initiative to
advance software engineering practices. [SWE-002]

2.1.1.2 The NASA CE shall periodically benchmark each Center's software engineering capability
against its Center Software Engineering Improvement Plan. [SWE-004]

Note: Capability Maturity Model® Integration (CMMI®) for Development (CMMI-DEV)
appraisals are the preferred benchmarks for objectively measuring progress toward software
engineering process improvement at NASA Centers.

2.1.1.3 The NASA Office of the Chief Engineer (OCE) shall periodically review project
compliance matrices. [SWE-152]

Page 15 of 79

 NPR 7150.2B

2.1.1.4 The NASA OCE shall authorize appraisals against selected requirements in this NPR to
check compliance. [SWE-129]

2.1.1.5 The NASA OCE and Center training organizations shall provide and fund training to
advance software engineering practices and software acquisition. [SWE-100]

2.1.1.6 The NASA OCE shall maintain an Agency-wide process asset library of applicable best
practices. [SWE-098]

2.1.2 Chief, Safety and Mission Assurance (SMA)

The Chief, SMA ensures the existence of robust safety and mission assurance processes and
activities through the development, implementation, assessment, and functional oversight of
Agency-wide safety, reliability, maintainability, quality, and risk management policies and
procedures. The Chief, SMA serves as principal advisor to the Administrator and other senior
officials on Agency-wide safety, reliability, maintainability, and quality; performs independent
program and project compliance verification audits; implements the SMA Technical Authority
process; monitors, collects, and assesses Agency-wide safety and mission assurance financial and
performance results; oversees the prompt investigation of NASA mishaps and assures the
appropriate closure; and co-chairs the SMSR with the OCE.

2.1.2.1 The NASA Chief, SMA will lead, maintain, and fund a NASA Software Assurance
Initiative to advance software assurance practices.

2.1.2.2 The NASA Chief, SMA will periodically benchmark each Center's software assurance
capabilities against the NASA Software Assurance Standard.

2.1.2.3 The NASA Chief, SMA will periodically review project compliance matrices.

2.1.2.4 The NASA Chief, SMA will authorize appraisals against selected requirements in this
NPR to check compliance.

2.1.2.5 The NASA Chief, SMA training organizations will provide and fund software assurance
training.

2.1.2.6 The NASA Chief, SMA will make the final decision on all waivers to SWE-141, the
independent verification and validation (IV&V) requirement.

2.1.3 Center Directors

2.1.3.1 In this document, the phrase "the Center Directors shall..." means that the roles and
responsibilities of the Center Directors may be further delegated within the organization consistent
with the scope and scale of the system.

2.1.3.2 Center Directors, or designees, shall maintain, staff, and implement a plan to continually
advance the Center’s in-house software engineering capability and monitor the software
engineering capability of NASA's contractors. [SWE-003]

Page 16 of 79

 NPR 7150.2B

Note: The recommended practices and guidelines for the content of a Center Software
Engineering Improvement Plan are defined in NASA-HDBK-2203, NASA Software
Engineering Handbook. Each Center has a current Center Software Engineering Improvement
Plan on file in the NASA Chief Engineer’s office.

2.1.3.3 Center Directors, or designees, shall establish, document, execute, and maintain software
processes. [SWE-005]

2.1.3.4 Center Directors, or designees, shall comply with the requirements in this directive that are
marked with an “X” in Appendix C. [SWE-140]

Note: Project relief from an applicable “X” requirement can be granted only by the
designated Technical Authority called out in the column titled “Technical Authority” in
Appendix C. The projects also document their related mitigations and risk acceptance in the
approved compliance matrix. When the requirement and software class are marked with an
“X,” the projects record the risk and rationale for any requirements that are completely
relieved in the compliance matrix.

2.1.3.5 The designated Center Engineering Technical Authority(s) for requirements in this NPR
that can be waived or deviated at the Center level shall be NASA civil servants (or JPL/CalTech
employees) approved by the Center Director. [SWE-122]

Note: Center Directors designate an Engineering Technical Authority for software from their
engineering organization for software Classes A through E and from their Center CIO
organization for Classes G and H. The designation of an Engineering Technical Authority(ies)
is documented in the Technical Authority Implementation Plan. The NASA CIO designates the
Engineering Technical Authority for Class F software. Refer to Appendix C (column titled
“Technical Authority”) for requirements and their associated Technical Authority.

2.1.3.6 Serving as Technical Authorities for requirements in this directive, Center Directors, or
designees shall:

a. Assess projects’ compliance matrices, tailoring, waivers, and deviations from requirements in
this directive by: [SWE-126]

(1) Checking the accuracy of the project’s classification of software components against the
definitions in Appendix D.

(2) Evaluating the project’s compliance matrix for commitments to meet applicable requirements
in this directive, consistent with software classification.

(3) Confirming that requirements marked “Not-Applicable” in the project’s compliance matrix are
not relevant or not capable of being applied.

(4) Determining whether the project’s risks, mitigations, and related requests for relief from
requirements designated with “X” in Appendix C are reasonable and acceptable.

http://swehb.nasa.gov/

Page 17 of 79

 NPR 7150.2B

(5) Coordinate with the Center S&MA organization that the compliance matrix implementation
approach does not impact safety and mission assurance on the project.

(6) Approving/disapproving requests for relief from requirements designated with “X” in
Appendix C, which fall under this Technical Authority’s scope of responsibility.

(7) Facilitating the processing of projects’ tailoring/compliance matrices, tailoring, waivers, or
deviations from requirements in this directive, which fall under the responsibilities of a different
Technical Authority (see column titled “Technical Authority” in Appendix C).

(8) Ensuring that approved compliance matrices, including any waivers and deviations against this
directive, are archived as part of retrievable project records.

Note: To effectively assess projects’ compliance matrices, the designated Center Engineering
Technical Authorities for this NPR are recognized NASA software engineering experts or
utilize recognized NASA software engineering experts in their decision processes.
Additionally, it is a best practice to obtain a risk assessment from the Center’s Safety and
Mission Assurance organization for any software waivers/deviations prior to Technical
Authority approval. NASA-HDBK-2203 contains valuable information on each requirement,
links to relevant NASA Lessons Learned, and guidance on tailoring. Center organizations or
branches may also share frequently used tailoring and related common processes.

b. Indicate their approval by signature(s) in the compliance matrix itself, when the compliance
matrix is used to waive/deviate from applicable “X” requirement(s). [SWE-145]

Note: The compliance matrix documents the requirements that the project plans to meet, “not
applicable” requirements, and any tailoring approved by designated Technical Authorities
with associated justification. If a project wants to waive or deviate from a requirement marked
as Headquarters Technical Authority, then the project is required to get NASA Headquarters
approval (e.g., NASA Chief Engineer (CE), NASA Chief, Safety and Mission Assurance
(CSMA), and/or NASA Chief Health and Medical Officer (CHMO)) on a formal
waiver/deviation request or on a software compliance matrix.

2.1.3.7 The Center Director or designee shall periodically report on the status of the Center’s
software engineering discipline, as applied to its projects, to the NASA Office of Chief Engineer
and relevant Technical Authorities as requested. [SWE-095]

2.1.3.8 Center Directors, or designees, shall maintain a reliable list of their Center’s programs and
projects containing Class A, B, C, and D software. [SWE-006] The list should include:

a. Project/program name and Work Breakdown Structure (WBS) number.

b. Software name(s) and WBS number(s).

c. Software size estimate (report in Kilo/Thousand Source Lines of Code (KSLOCs)).

http://swehb.nasa.gov/

Page 18 of 79

 NPR 7150.2B

d. Phase of development or operations.

e. Safety Critical Software (Yes or No).

f. Software Class or list of the software classes being development on the project.

g. For each Computer Software Configuration Item (CSCI)/Major System containing Class A, B,
or C software, provide:

(1) The name of the software development organization.

(2) Title or brief description of the CSCI/Major System.

(3) The estimated total KSLOC the CSCI/Major System represents.

(4) The primary programing languages used.

(5) Primary life-cycle methodology being used on the software project.

(6) Name of responsible software assurance organization(s).

2.1.3.9 For Class A, B, C, and safety critical software projects, the Center Director shall establish
and maintain a software measurement repository for software project measurements containing at
a minimum: [SWE-091]

a. Software development tracking data.

b. Software functionality achieved data.

c. Software quality data.

d. Software development effort and cost data.

2.1.3.10 For Class A, B, C, and safety critical software projects, the Center Director shall utilize
software measurement data for monitoring software engineering capability, improving software
quality, and tracking the status of software engineering improvement activities. [SWE-092]

2.1.3.11 Each Center Director shall maintain and implement software training plan(s) to advance
its in-house software engineering capability and as a reference for its contractors. [SWE-101]

2.1.3.12 For Class A, B, and C software projects, each Center Director shall establish and maintain
a software cost repository(ies) that contains at least one of the following measures: [SWE-142]

a. Planned and actual effort and cost.

b. Planned and actual schedule dates for major milestones.

Page 19 of 79

 NPR 7150.2B

c. Both planned and actual values for key cost parameters that typically include software size,
requirements count, defects counts for maintenance or sustaining engineering projects, and cost
model inputs.

d. Project descriptors or metadata that typically includes software class, software domain/type, and
requirements volatility.

2.1.3.13 Each Center Director shall contribute applicable software engineering process assets in
use at his/her Centers to the Agency-wide process asset library. [SWE-144]

2.1.3.14 The designated Engineering Technical Authority(s) shall define the content requirements
for software documents or records. [SWE-153].

Note: The recommended practices and guidelines for the content of different types of software
activities (whether stand-alone or condensed into one or more project level or software
documents or electronic files) are defined in NASA-HDBK-2203. The Center defined content
should address prescribed content, format, maintenance instructions, and submittal
requirements for all software related records. The designated Engineering Technical
Authority for software approves the required software content for projects within their scope
of authority. Electronic submission of data deliverables is preferred.

2.1.4 Center Safety and Mission Assurance (SMA)

2.1.4.1 The Center SMA ensures the existence of robust safety and mission assurance processes and
activities through the development, implementation, assessment, and functional oversight of
Center-wide safety, reliability, maintainability, quality, and risk management policies and
procedures. The Center SMA serves as principal advisor to the Center Director on Center-wide
safety, reliability, maintainability, and quality; performs independent program and project
compliance verification audits; implements the SMA Technical Authority process; monitors,
collects, and assesses Center-wide safety and mission assurance financial and performance results;
and oversees the prompt investigation of Center mishaps and assures the appropriate closure.

2.1.4.2 The Center SMA will ensure that the project’s software assurance organization performs
an independent classification assessment.

2.1.4.3 The Center SMA will ensure that the project implements software assurance per NASA-
STD-8739.8.

2.1.4.4 The Center SMA will ensure that the project determines the software safety criticality in
accordance with NASA-STD-8719.13.

2.1.4.5 The Center SMA will ensure that when a project is determined to have safety-critical
software, that the project implements the requirements of NASA-STD-8719.13.

2.1.4.6 The Center SMA will approve the project’s Independent Verification and Validation
(IV&V) provider’s IV&V Project Execution Plan (IPEP).

Page 20 of 79

 NPR 7150.2B

2.1.4.7 The Center SMA will support the project to ensure that acquired, developed, and
maintained software, as required by SWE-032, is from an organization with a non-expired
CMMI-DEV rating as measured by a CMMI Institute authorized or certified lead appraiser.

2.1.4.8 The Center SMA will support the Center organizations in maintaining the NASA
organization’s CMMI-DEV ratings.

2.1.5 Program and Project Managers

2.1.5.1 The software management process requires the understanding and application of laws and
additional NASA policy requirements that impact the development, release, and/or maintenance of
software. The documents listed in this section are additional requirements that may have an effect
on software development projects and are mentioned here for awareness and completeness.

2.1.5.2 The Program and Project Managers ensure that software invention requirements of
NPD 2091.1 are implemented by the project.

2.1.5.3 The Program and Project Managers ensure that software technology transfer requirements
of NPR 2190.1 are implemented by the project. The project ensures that there will be no access
by foreign persons or export or transfer to foreign persons or destinations until an export control
review is completed and access/release is approved in accordance with NPR 2190.1 and
NPR 2210.1.

2.1.5.4 The Program and Project Managers ensure that software external release requirements of
NPR 2210.1 are implemented by the project.

2.1.5.5 The Program and Project Managers ensure that the information security requirements of
NPR 2810.1 and NPR 2841.1 are implemented by the project.

2.1.5.6 The Program and Project Managers ensure that software is accessible to individuals with
disabilities in accordance with NPR 2800.2.

2.1.5.7 The Program and Project Managers ensure that software acquisitions or developments that
meet NASA's capitalization criteria be capitalized per NPR 9250.1.

2.1.5.8 The Program and Project Managers ensure the human-rated software specific requirements
of NPR 8705.2 are fulfilled.

2.1.5.9 The Program and Project Managers ensure the implementation of NPR 8735.1 for software
in Category 1 and 2 programs and projects (see NPR 7120.5, Space Flight Program and Project
Management Requirements and NPR 7120.8, NASA Research and Technology Program and
Project Management Requirements) and for payloads with risk classification levels A-D (see
NPR 8705.4, Risk Classification for NASA Payloads).

2.1.5.10 The Program and Project Managers ensure that IT strategy, investment, implementation,
and operations decisions are integrated per NPR 2800.1.

Page 21 of 79

 NPR 7150.2B

2.1.5.11 The Program and Project Managers ensure that IT investments made at the project level
align with the Agency Enterprise Architecture per NPR 2830.1.

2.1.5.12 The Program and Project Managers ensure compliance with intellectual property
requirements and copyright laws.

2.1.5.13 When IV&V is required for a project as per Section 3.6 of this document, the project
manager will ensure that IV&V is performed by the NASA IV&V Program, unless an alternate
IV&V provider is agreed to by the CSMA.

2.2 Principles Related to Tailoring Requirements

2.2.1 Software requirements tailoring is the process used to seek relief from NPR requirements
consistent with program or project objectives, acceptable risk, and constraints. To accommodate
the wide variety of software systems and subsystems, application of these requirements to specific
software development efforts may be tailored where justified and approved. To effectively
maintain control over the application of requirements in this directive and to ensure proposed
variants from specific requirements are appropriately mitigated, NASA established Technical
Authority governance. Waivers and deviations from requirements in this directive are governed
by the following requirements, as well as those established in NPD 1000.3, NPR 7120.5,
NPR 7120.7, and NPR 7120.8 for all of the Agency’s investment areas. The Technical Authority
for each requirement in this NPR is documented in the "Technical Authority" column of
Appendix C. The NASA CSMA has co-approval on any waiver or deviation decided at the
Headquarters level that involves software. The NASA CHMO has co-approval on any waiver or
deviation decided at the Headquarters level that involves software with health and medical
implications. Waivers or deviations decided at the Center level are to follow similar protocol when
software criticality or health and medical issues are involved.

2.2.2 This directive establishes a baseline set of requirements to reduce software engineering risks
on NASA projects and programs. Appendix C defines the default applicability of the requirements
based on software classification and safety criticality. Tailoring is the process used to adjust or
seek relief from a prescribed requirement to accommodate the needs of a specific task or activity
(e.g., program or project). The tailoring process results in the generation of waivers or deviations
depending on the timing of the request (see Appendix A for relevant definitions). Each project has
unique circumstances, and tailoring can be employed to modify the requirements set appropriate
for the software engineering effort. Tailoring of requirements is based on key characteristics of the
software engineering effort, including acceptable technical and programmatic risk posture, Agency
priorities, size, and complexity. Requirements can be tailored more broadly across a group of
similar projects, a program, an organization, or other collection of similar software development
efforts in accordance with NPR 7120.5, Section 3.5.5.

2.2.3 In this document, the phrase "the project manager shall..." means the roles and responsibilities
of the project manager may be further delegated within the organization to the scope and scale of
the system.

Page 22 of 79

 NPR 7150.2B

2.2.4 Where approved, the project manager shall document and reflect the tailored requirement in
the plans or procedures controlling the development, acquisition, and/or deployment of the
affected software. [SWE-121]

2.2.5 Each project manager with software components shall maintain a compliance matrix or
multiple compliance matrices against requirements in this NPR, including those delegated to other
parties or accomplished by contract vehicles or Space Act Agreements. [SWE-125]

Note: A project may have multiple software engineering compliance matrices if needed for
multiple software components on a given project.

2.2.6 The projects shall comply with the requirements in this NPR that are marked with a
“project” responsibility and an “X” in Appendix C consistent with their software classification.
[SWE-139]

Note: Project relief from an applicable “X” requirement can be granted only by the
designated Technical Authority called out in the column titled “Technical Authority” in
Appendix C. The projects also document their related mitigations and risk acceptance in the
approved compliance matrix. When the requirement and software class are marked with an
“X,” the projects record the risk and rationale for any requirements that are completely
relieved in the compliance matrix.

2.2.7 Requirements in this directive are invoked by Software Classifications in Appendix C:

a. “X” – Indicates an invoked requirement by this directive consistent with Software Classification
(ref. SWE-139).

b. Blank – Optional/Not invoked by this directive.

2.2.8 The approval of the Technical Authority designated in Appendix C is required for all
tailoring of requirements designated as “X.” The implementation approach used to meet each
requirement is typically determined by the appropriate software engineering management in
conjunction with the project.

2.2.9 Requests for software requirements relief at either the Center or Headquarters Technical
Authority level (i.e., partial or complete relief) may be submitted in the streamlined form of a
compliance matrix. The required signatures from the responsible organizations and designated
Technical Authorities, engineering and safety and mission assurance, are to be obtained. If the
compliance matrix is completed and approved in accordance with NPR 7120.5’s direction on
Technical Authority and this directive, it meets the requirements for requesting tailoring and
serves as a waiver or deviation.

2.2.10 Technical Authorities for requirements in this NPR shall review any tailored requirements
whenever changes in project software plans or technical scope are made. [SWE-150]

Page 23 of 79

 NPR 7150.2B

2.2.11 The tailoring process (which can occur at any time in the program or project's life cycle)
results in deviations or waivers to requirements depending on the timing of the request. Deviations
and waivers of the requirements in this NPR can be submitted separately to the requirements
owner or via the appropriate compliance matrix.

Page 24 of 79

 NPR 7150.2B

Chapter 3: Software Management Requirements

The software management activities define and control the many software aspects of a project
from beginning to end. This includes the interfaces to other organizations, determination of
deliverables, estimates and tracking of schedule and cost, risk management, formal and informal
reviews as well as other forms of verification and validation, and determination of the amount of
supporting services. The planned management of these activities is captured in one or more
software and/or system plans.

3.1 Software Life Cycle Planning

3.1.1 Software life cycle planning covers the software aspects of a project from inception through
retirement. The software life cycle planning cycle is an organizing process that considers the
software as a whole and provides the planning activities required to ensure a coordinated, well-
engineered process for defining and implementing project activities. These processes, plans, and
activities are coordinated within the project. At project conception, software needs for the project
are analyzed, including acquisition, supply, development, operation, maintenance, retirement, and
supporting activities and processes. The software effort is scoped and the processes,
measurements, and activities are documented in software plan(s). As noted earlier in Section 1.1.4,
this NPR makes no recommendation for a specific software life-cycle model (i.e., it allows agile,
incremental, spiral, etc., life-cycle models). However, expectations from the system project life-
cycle models need to be adequately addressed in the software plan(s).

3.1.2 The project manager shall develop, maintain, and execute software plans that cover the entire
software life cycle and, as a minimum, address the requirements of this directive with approved
tailoring. [SWE-013]

Note: The recommended practices and guidelines for the content of different types of software
planning activities (whether stand-alone or condensed into one or more project level or
software documents or electronic files) are defined in NASA-HDBK-2203.

3.1.3 The project manager shall track the actual results and performance of software activities
against the software plans. [SWE-024]

a. Corrective actions are taken, recorded, and managed to closure.

b. Changes to commitments (e.g., software plans) that have been agreed to by the affected groups
and individuals.

3.2 Software Cost Estimation

3.2.1 The project manager shall establish, document, and maintain two cost estimates and
associated cost parameters for all software Class A and B projects that have an estimated project

http://swehb.nasa.gov/

Page 25 of 79

 NPR 7150.2B

cost of $2 million or more or one software cost estimate and associated cost parameter(s) for other
software projects. [SWE-015]

3.2.2 The project manager‘s software cost estimate(s) shall satisfy the following conditions:
[SWE-151]

a. Covers the entire software life cycle.

b. Is based on selected project attributes (e.g., assessment of the size, functionality, complexity,
criticality, reuse code, modified code, and risk of the software processes and products).

c. Is based on the cost implications of the technology to be used and the required maturation of
that technology.

d. Incorporates risk and uncertainty.

e. Includes the cost for software assurance support.

f. Includes other direct costs.

Note: In the event of a decision to outsource, it is a best practice that both the acquirer
(NASA) and the provider (contractor/subcontractor) be responsible for developing software
cost estimates. For any class of software that has significant risk exposure, consider
performing at least two cost estimates.

3.3 Software Schedules

3.3.1 The project manager shall document and maintain a software schedule that satisfies the
following conditions: [SWE-016]

a. Coordinates with the overall project schedule.

b. Documents the interactions of milestones and deliverables between software, hardware,
operations, and the rest of the system.

c. Reflects the critical path for the software development activities.

d. Adhere to the guidance provided in NASA/SP-2010-3403, NASA Scheduling Management
Handbook.

3.3.2 The project manager shall regularly hold reviews of software activities, status, and results
with the project stakeholders and track issues to resolution. [SWE-018]

3.3.3 The project manager shall select and document a software development life cycle or model
that includes phase transition criteria for each life-cycle phase. [SWE-019]

Page 26 of 79

 NPR 7150.2B

3.4 Software Project Specific Training

3.4.1 The project manager shall plan, track, and ensure project specific software training for
project personnel. [SWE-017]

Note: This includes any software assurance personnel assigned to the project.

3.5 Software Classification and Planning Assessments

3.5.1 The project manager shall classify each system and subsystem containing software in
accordance with the highest applicable software classification definitions for Classes A, B, C, D,
E, F, G, and H software in Appendix D. [SWE-020]

Note: The expected applicability of requirements in this directive to specific systems and
subsystems containing software is determined through the use of the NASA-wide definitions for
software classes in Appendix D and the designation of the software as safety critical or non-
safety critical in conjunction with the Requirements Mapping and Compliance Matrix in
Appendix C. These definitions are based on: (1) usage of the software with or within a NASA
system, (2) criticality of the system to NASA’s major programs and projects, (3) extent to
which humans depend upon the system, (4) developmental and operational complexity, and (5)
extent of the Agency’s investment. Software classification tool details are defined in NASA-
HDBK-2203.

3.5.2 The project’s software assurance manager shall perform an independent classification
assessment. [SWE-132]

Note: Engineering and software assurance must reach agreement on the software
classification determination of the software. Disagreements are elevated via both the
Engineering Technical Authority and Safety and Mission Assurance Technical Authority
chains.

3.5.3 The project manager, in conjunction with the Safety and Mission Assurance organization,
shall determine the software safety criticality in accordance with NASA-STD-8719.13.
[SWE-133].

Note: Software Safety Critical Assessment Tool, in NASA-HDBK-2203, can be used to
determine the software safety criticality. Engineering and software assurance must reach
agreement on safety-critical determination of the software. Disagreements are elevated via
both the Engineering Technical Authority and Safety and Mission Assurance Technical
Authority chains.

3.5.4 If a system or subsystem evolves to a higher or lower software classification as defined in
Appendix D, or there is a change in the safety criticality of the software, then the project manager
shall update their plan to fulfill the applicable requirements per the Requirements Mapping and
Compliance Matrix in Appendix C and any approved tailoring. [SWE-021]

http://swehb.nasa.gov/
http://swehb.nasa.gov/

Page 27 of 79

 NPR 7150.2B

3.5.5 If a software component is determine to be safety critical software then software component
classification shall be Software Class D or higher. [SWE-160]

3.6 Software Assurance and Software IV&V

3.6.1 The project manager shall plan and implement software assurance per NASA-STD-8739.8.
[SWE-022]

Note: Software assurance activities occur throughout the life of the project. Some of the
actual analyses and activities may be performed by engineering or the project.

3.6.2 For projects reaching Key Decision Point (KDP) A after the effective date of this directive’s
revision, the program manager shall ensure that software IV&V is performed on the following
categories of projects: [SWE-141]

a. Category 1 projects as defined in NPR 7120.5.

b. Category 2 projects as defined in NPR 7120.5 that have Class A or Class B payload risk
classification per NPR 8705.4.

c. Projects specifically selected by the NASA CSMA to have software IV&V.

Note: The NASA IV&V Board of Advisors supports the NASA CSMA by recommending significant
project needs for software IV&V beyond projects meeting the criteria in items a. and b. of SWE-
141. Waivers to the above requirement will be written by the project and responsible Center SMA
organization, adjudicated by the NASA IV&V Board of Advisors, with the final decision by the
NASA CSMA. Additional projects, projects in other phases, or projects without a payload risk
classification can be selected by the NASA CSMA to be required to have software IV&V. It is
NASA policy to use the NASA IV&V Facility as the sole provider of IV&V services when software
created by or for NASA is selected for IV&V by the NASA CSMA. IV&V support is funded and
managed independent of the selected project.

3.6.3 If software IV&V is performed on a project, the project manager shall ensure that an IV&V
Project Execution Plan (IPEP) is developed. [SWE-131]

Note: The scope of IV&V services is determined by the project and the IV&V provider, and is
documented in the IPEP. The IPEP is developed by the IV&V provider and serves as the
operational document that will be shared with the project receiving IV&V support. In
accordance with the responsibilities defined in NPD 7120.4, section 5.J.(5), projects ensure
that software providers allow access to software and associated artifacts to enable
implementation of IV&V. A template and instructions for an IPEP may be found in the NASA
IV&V Management System, accessible at
http://www.nasa.gov/centers/ivv/ims/home/index.html

http://www.nasa.gov/centers/ivv/ims/home/index.html

Page 28 of 79

 NPR 7150.2B

3.7 Safety-critical Software

3.7.1 When a project is determined to have safety-critical software, the project manager shall
implement the requirements of NASA-STD-8719.13. [SWE-023]

3.7.2 When a project is determined to have safety-critical software, the project manager shall
implement the following items in the software: [SWE-134]

a. Safety-critical software is initialized, at first start and at restarts, to a known safe state.

b. Safety-critical software safely transitions between all predefined known states.

c. Termination performed by software of safety critical functions is performed to a known safe
state.

d. Operator overrides of safety-critical software functions require at least two independent actions
by an operator.

e. Safety-critical software rejects commands received out of sequence, when execution of those
commands out of sequence can cause a hazard.

f. Safety-critical software detects inadvertent memory modification and recovers to a known safe
state.

g. Safety-critical software performs integrity checks on inputs and outputs to/from the software
system.

h. Safety-critical software performs prerequisite checks prior to the execution of safety-critical
software commands.

i. No single software event or action is allowed to initiate an identified hazard.

j. Safety-critical software responds to an off nominal condition within the time needed to prevent a
hazardous event.

k. Software provides error handling of safety-critical functions.

l. Safety-critical software has the capability to place the system into a safe state.

m. Safety-critical elements (requirements, design elements, code components, and interfaces) are
uniquely identified as safety-critical.

n. Requirements are incorporated in the coding methods, standards, and/or criteria to clearly
identify safety-critical code and data within source code comments.

Note: These requirements are applicable to components that reside in a safety-critical system,
and the components control, mitigate, or contribute to a hazard as well as software used to
command hazardous operations/activities.

Page 29 of 79

 NPR 7150.2B

3.8 Automatic Generation of Software Source Code

3.8.1 The project manager shall define the approach to the automatic generation of software source
code including: [SWE-146]

a. Validation and verification of auto-generation tools.

b. Configuration management of the auto-generation tools and associated data.

c. Identification of the allowable scope for the use of auto-generated software.

d. Verification and validation of auto-generated source code.

e. Monitoring the actual use of auto-generated source code compared to the planned use.

f. Policies and procedures for making manual changes to auto-generated source code.

g. Configuration management of the input to the auto-generation tool, the output of the auto-
generation tool, and modifications made to the output of the auto-generation tools.

3.9 Use of Commercial, Government, Legacy, Heritage, and Modified Off-the-Shelf Software

3.9.1 Projects utilizing commercial, government, legacy, heritage, and MOTS software
components typically take into consideration the importance of planning and managing the
inclusion of those components into the project software. The off-the-shelf software discussed here
applies only when the off-the-shelf software elements are to be included as part of a NASA system
(per Section P.2.b). The following requirements do not apply to stand-alone desktop applications
(e.g., word processing programs, spreadsheet programs, presentation programs). When software
components use COTS applications (e.g., spreadsheet programs, database programs) within a
NASA system/subsystem application, the software components typically are assessed and
classified as part of the software subsystem in which they reside. Note that commercial,
government, legacy, heritage, and MOTS software also have to meet the applicable requirements
for each class of software.

3.9.2 The project manager shall satisfy the following conditions when a COTS, GOTS, MOTS, or
reused software component is acquired or used: [SWE-027]

a. The requirements to be met by the software component are identified.

b. The software component includes documentation to fulfill its intended purpose (e.g., usage
instructions).

c. Proprietary rights, usage rights, ownership, warranty, licensing rights, and transfer rights have
been addressed.

d. Future support for the software product is planned and adequate for project needs.

Page 30 of 79

 NPR 7150.2B

e. The software component is verified and validated to the same level required to accept a similar
developed software component for its intended use.

f. The project has a plan to perform periodic assessments of vendor reported defects to ensure the
defects do not impact the selected software components.

Note: The project responsible for procuring off-the-shelf software is responsible for
documenting, prior to procurement, a plan for verifying and validating the software to the
same level that would be required for a developed software component. The project ensures
that the COTS, GOTS, MOTS, reused, and auto generated code software components and data
meet the applicable requirements in this directive assigned to its software classification as
shown in Appendix C. Open source requirements are in Section 3.15.

3.10 Software Verification and Validation

3.10.1 Ensuring that the software products meet their requirements and intended usage, and that
the products were built correctly is the purpose of verification and validation. Both software
validation and software verification activities span the entire software life cycle and need to be
planned. Software validation and software verification activities can include software formal and
informal reviews, software peer reviews, software inspections, software testing, software
demonstrations, and software analyses. Because software peer reviews and inspections are such an
important verification and validation tool with proven value, specific software peer review and
inspection requirements are contained in Chapter 5 of this directive.

3.10.2 The project manager shall plan software verification activities, methods, environments, and
criteria for the project. [SWE-028]

3.10.3 The project manager shall plan the software validation activities, methods, environments,
and criteria for the project. [SWE-029]

3.10.4 The project manager shall record, address, and track to closure the results of software
verification activities. [SWE-030]

3.10.5 The project manager shall record, address, and track to closure the results of software
validation activities. [SWE-031]

3.11 Software Development Processes

3.11.1 The use of the CMMI model is included to make sure NASA projects are supported by
software development organization(s) having the necessary skills and processes in place to
produce reliable products within cost and schedule estimates. The CMMI requirement, SWE-032,
provides NASA with a methodology to:

a. Measure software development organizations against an industry-wide set of best practices that
address software development and maintenance activities applied to products and services.

Page 31 of 79

 NPR 7150.2B

b. Measure and compare the maturity of an organization's product development and acquisition
processes with industry state of the practice.

c. Measure and ensure compliance with the intent of the NPR 7150.2 process related requirements
using an industry standard approach.

d. Assess internal and external software development organization’s processes.

e. Identify potential risk areas within a given organization's software development processes.

3.11.2 The CMMI-DEV is an internationally used framework for process improvement in
development organizations. It is an organized collection of best practices and proven processes
that thousands of software organizations have both used and been appraised against for over the
past two decades. CMMI defines practices that businesses have implemented on their way to
success. Practices cover topics that include eliciting and managing requirements, decision making,
measuring performance, planning work, handling risks, and more. Using these practices, NASA
can improve NASA software projects' chances of mission success. CMMI ratings can cover a
team, a work group, a project, a division, or an entire organization. When evaluating software
suppliers, it's important to make sure that the specific organization doing the software work on the
project has the cited rating (as some parts of a company may be rated while others are not).

3.11.3 The project manager shall acquire, develop, and maintain software from an organization
with a non-expired CMMI-DEV rating as measured by a CMMI Institute authorized or certified
lead appraiser as follows: [SWE-032]

a. For Class A software: CMMI-DEV Maturity Level 3 Rating or higher for software, or CMMI-
DEV Capability Level 3 Rating or higher in all CMMI-DEV Maturity Level 2 and 3 process areas
for software.

b. For Class B software (except Class B software on NASA Class D payloads, as defined in
NPR 8705.4): CMMI-DEV Maturity Level 2 Rating or higher for software, or CMMI-DEV
Capability Level 2 Rating or higher for software in the following process areas:

(1) Requirements Management.

(2) Configuration Management.

(3) Process and Product Quality Assurance.

(4) Measurement and Analysis.

(5) Project Planning.

(6) Project Monitoring and Control.

(7) Supplier Agreement Management (if applicable).

Page 32 of 79

 NPR 7150.2B

Note: Organizations that have completed Standard CMMI® Appraisal Method for Process
Improvement (SCAMPISM) Class A appraisals against the CMMI-DEV model are to maintain
their rating and have their results posted on the CMMI Institute Web site so that NASA can
assess the current maturity/capability rating. Software development organizations need to be
reappraised and keep an active appraisal rating posted on the CMMI® Institute Website
during the time that they are responsible for the development and maintenance of the software.

Note: For Class B software, in lieu of a CMMI® rating by a development organization, the
project will conduct an evaluation, performed by a qualified evaluator selected by the Center
Engineering Technical Authority, of the seven process areas listed in SWE-032 and mitigate
any risk, if deficient. This exception is intended to be used in those cases in which NASA
wishes to purchase a product from the "best of class provider," but the best of class provider
does not have the required CMMI® rating. When this exception is exercised, the Center
Engineering Technical Authority is notified.

Note: For Class B software on NASA Class D Payloads and Class C software, it is highly
recommended that providers have a Certified CMMI® Lead Appraiser conduct periodic
informal evaluations (e.g., Appraisal Class Bs or Cs) against relevant process areas.

3.12 Software Acquisition

3.12.1 The requirements in this section are applicable for both NASA contracted software
procurements (e.g., reuse of existing software, modification of existing software, contracted and
subcontracted software, and/or development of new software) and in-house developments.
Acquisition requirements are focused both inside the acquisition organization, to ensure the
acquisition is conducted effectively, and outside the acquisition organization, as the organization
conducts project monitoring and control of its suppliers. These acquisition requirements provide a
foundation for acquisition process discipline and rigor that enables product and service
development to be repeatedly executed with high levels of acquisition success. This section
contains project software acquisition and contract requirements to ensure that the project has the
data needed for the review of provided systems and/or services. The project is responsible for
ensuring that these requirements apply when software activities are developed in-house, contracted
directly, or subcontracted from a NASA prime contractor. These requirements are used in addition
to, not in place of, the other requirements of this directive.

3.12.2 The project manager shall assess options for software acquisition versus development.
[SWE-033]

Note: The assessment can include risk, cost, and benefits criteria for each of the options listed
below:
a. Acquire an off-the-shelf software product that satisfies the requirement.
b. Develop the software product or obtain the software service internally.
c. Develop the software product or obtain the software service through contract.
d. Enhance an existing software product or service.
e. Reuse an existing software product or service.

Page 33 of 79

 NPR 7150.2B

3.12.3 The project manager shall define and document the acceptance criteria and conditions for
the software. [SWE-034]

3.12.4 The project manager shall establish a procedure for software supplier selection, including
proposal evaluation criteria. [SWE-035]

3.12.5 The project manager shall determine which software processes, software documents,
electronic products, software activities, and tasks are required for the project and software
suppliers. [SWE-036]

Note: A list of typical software engineering products or electronic data products used on a
software project is contained in Chapter 6 of this directive.

3.12.6 The project manager shall define the milestones at which the software supplier(s) progress
will be reviewed and audited as a part of the acquisition activities. [SWE-037]

3.12.7 The project manager shall document software acquisition planning decisions. [SWE-038]

3.12.8 The project manager shall require the software supplier(s) to provide insight into software
development and test activities; at a minimum, the software supplier(s) will be required to allow
the project manager or designate to: [SWE-039]

a. Monitor product integration.

b. Review the verification activities to ensure adequacy.

c. Review trades studies and source data.

d. Audit the software development process.

e. Participate in software reviews and systems and software technical interchange meetings.

3.12.9 The project manager shall require the software supplier(s) to provide NASA with software
products and software process tracking information, in electronic format, including software
development and management metrics. [SWE-040]

3.12.10 The project manager shall require the software supplier(s) to provide NASA with
electronic access to the source code developed for the project in a modifiable format, including
MOTS software and non-flight software (e.g., ground test software, simulations, ground analysis
software, ground control software, science data processing software, and hardware manufacturing
software). [SWE-042]

Note: The electronic access requirements for the source code, software products, and software
process tracking information implies that NASA gets electronic copies of the items for use by
NASA at NASA facilities.

Page 34 of 79

 NPR 7150.2B

3.13 Software Monitoring

3.13.1 The project manager shall require the software supplier to track software changes and non-
conformances and provide the data for the project's review. [SWE-043]

3.13.2 The project manager shall participate in any joint NASA/supplier audits of the software
development process and software configuration management process. [SWE-045]

3.13.3 The project manager shall require the software supplier(s) to provide a software schedule
for the project's review and schedule updates as requested. [SWE-046]

3.13.4 The project manager shall require the software supplier(s) to make electronically available
the software traceability data for the project's review. [SWE-047]

3.14 Software Reuse

3.14.1 Software reuse entails capitalizing on existing software and systems to create new products.
Successful reuse requires the integration of reuse-related activities into the life cycle to create
reusable assets for current and future software and systems. Unless reuse is explicitly planned into
life-cycle processes, an organization will not be able to repeatedly exploit reuse opportunities in
multiple software projects or products. Systematic reuse is the practice of reuse according to a
consistent, repeatable process. Practicing systematic reuse requires a focus on the use of
engineering principles for all reuse assets involved in development. The major benefits that
systematic reuse can deliver are as follows:

a. Increase software productivity.

b. Shorten software development and maintenance time.

c. Reduce duplication of effort.

d. Move personnel, tools, and methods more easily among projects.

e. Reduce software development and maintenance costs.

f. Produce higher quality software products.

g. Increase software and system dependability.

3.14.2 The project manager shall specify reusability requirements that apply to its software
development activities to enable future reuse of the software, including models used to generate
the software. [SWE-147]

3.14.3 The project manager shall evaluate software for potential reuse by other projects across the
Agency and contribute reuse candidates to the Agency Software Catalog. [SWE-148]

Page 35 of 79

 NPR 7150.2B

Note: The Agency Software Catalog is maintained as a part of the NASA Technology Transfer
Portal. Each software code listed in the catalog is evaluated for access requirements and
restrictions per the software release process (see http://technology.nasa.gov/ and
NPR 2210.1).

3.15 Open Source

3.15.1 Open Source Software (OSS) is commercial off-the-shelf software (COTS) that is licensed
to allow distribution, use, and redistribution of the software source code, including modifications.
There are many different types of OSS licenses, though any software license that has been
approved by the Open Source Initiative (OSI) allows, at a minimum, use, modification and
redistribution of the source code for any purpose. Most OSS licenses allow the software to become
closed source and do not require that the source code and any modifications be redistributed, while
other OSS licenses require that the source code and any modifications be made available to
whomever the end product is distributed to. Many OSS projects are supported by multiple
commercial organizations directly, and because the software is available for modification, a
particular software project can also be supported by new vendors or directly by NASA where
appropriate. Leveraging OSS in NASA software requires understanding of the architecture and
implementation of the OSS, its technical merit, and a legal review of its use related to licensing
and intellectual property.

3.15.2 The project manager shall ensure that when an OSS component is acquired or used, the
following conditions are satisfied: [SWE-149]

a. The requirements that are to be met by the software component are identified.

b. The software component includes documentation to fulfill its intended purpose (e.g., usage
instructions).

c. Proprietary, usage, ownership, warranty, licensing rights, and transfer rights have been
addressed.

d. Future support for the software product is planned and adequate for project needs.

e. The software component is verified and validated to the same level required to accept a similar
developed software component for its intended use.

Note: It is important to understand that under copyright law, OSS is a form of commercial
software that needs to be treated with the same respect as any other commercial software. For
this reason, it is important to understand both the specifics of the open source license in
question and how the project intends to use and redistribute any modified OSS. It is the
project's responsibility for both commercial and OSS to verify that the Government receives
sufficient rights in any source or executable code, libraries, or "building blocks"
(COTS/GOTS/MOTS & OSS) to meet the project's needs along with any anticipated further
Government applications. This may include verifying that the license does not contain any

http://technology.nasa.gov/

Page 36 of 79

 NPR 7150.2B

undesired requirements or restrictions on redistribution, modification and release, etc. Seek
guidance from your Center Office of Chief Counsel for help in making these determinations.

3.15.3 The project manager shall require the software supplier(s) to notify the project, in the
response to the solicitation, as to whether or not open source software will be included in code
developed for the project. [SWE-041]

3.16 Software Security

3.16.1 A central and critical aspect of the computer security problem is a software problem.
Software defects with security ramifications include implementation bugs such as buffer
overflows and design flaws such as inconsistent error handling. The following requirements in
section 3.16 are for space flight software only. Security requirements for the acquisition,
development, integration, and modification of ground software systems are found in NPR 2810.1.

3.16.2 The project manager shall ensure that security risks in space flight software systems are
identified and security risk mitigations are planned for these systems in the Project Protection
Plan. [SWE-154]

3.16.3 The project manager shall implement the identified software security risk mitigations
addressed in the Project Protection Plan. [SWE-155]

3.16.4 The project manager shall ensure and record that all systems including space flight software
are evaluated for security risks, including risks posed by the use of COTS, GOTS, MOTS, Open
Source, and reused software. [SWE-156]

3.16.5 The project manager shall ensure that software systems with space communications
capabilities are protected against un-authorized access. [SWE-157]

3.16.6 The project manager shall ensure that the space flight software systems are assessed for
possible security vulnerabilities and weaknesses. [SWE-158]

3.16.7 The project manager shall verify and validate the required software security risk mitigations
to ensure that security objectives identified in the Project Protection Plan for space flight software
are satisfied in their implementation. [SWE-159]

Note: include assessments for security vulnerabilities during Peer Review/Inspections of
software requirements and design and undergo automated security static analysis as well as
coding standard static analyses of software code to find potential security vulnerabilities.

Page 37 of 79

 NPR 7150.2B

Chapter 4: Software Engineering Life-Cycle Requirements

This directive makes no recommendation for a specific software life-cycle model. Each has its
strengths and weaknesses, and no one model is best for every situation. Whether using the agile
methods, spiral model, the iterative model, waterfall, or any other development life-cycle model,
each has its own set of requirements, design, implementation, testing, release to operations,
maintenance, and retirement. Although this directive does not impose a particular life-cycle model
on each software project, it does support a standard set of life-cycle phases. Use of the different
phases of a life cycle allows the various products of a project to be gradually developed and
matured from initial concepts through the fielding of the product and to its final retirement.
Without recommending a life cycle, the requirements for each of these steps are provided below.

4.1 Software Requirements

4.1.1 The requirements phase is one of the most important phases of software engineering. Studies
show that the top problems in the software industry are due to poor requirements elicitation,
inadequate requirements specification, and inadequate management of changes to requirements.
Requirements provide the foundation for the entire life-cycle, as well as for the software product.
Requirements also provide a basis for planning, estimating, and monitoring. Requirements are
based on customer, user, and other stakeholder needs and design and development constraints. The
development of requirements includes elicitation, analysis, documentation, verification, and
validation. Ongoing customer validation of the requirements to ensure the end products meet
customer needs is an important part of the life-cycle process. This can be accomplished via rapid
prototyping and customer-involved reviews of iterative and final software requirements.

4.1.2 Requirements Development

4.1.2.1 The project manager shall establish, capture, record, approve, and maintain software
requirements, including the software quality requirements, as part of the technical specification.
[SWE-050]

Note: The software technical requirements definition process is used to transform the
baselined stakeholder expectations into unique, quantitative, and measurable technical
software requirements that can be used for defining a design solution for the software end
products and related enabling products. This process also includes validation of the
requirements to ensure that the requirements are well formed (clear and unambiguous),
complete (agrees with customer and stakeholder needs and expectations), consistent (conflict
free), and individually verifiable and traceable to a higher level requirement. Recommended
content for a software specification can be found in NASA-HDBK-2203.

4.1.2.2 The project manager shall perform software requirements analysis based on flowed-down
and derived requirements from the top-level systems engineering requirements and the hardware
specifications and design. [SWE-051]

http://swehb.nasa.gov/

Page 38 of 79

 NPR 7150.2B

4.1.2.3 The project manager shall perform, record, and maintain bidirectional traceability between
the software requirement and the higher-level requirement. [SWE-052]

4.1.3 Requirements Management

4.1.3.1 The project manager shall track and manage changes to the software requirements. [SWE-
053]

4.1.3.2 The project manager shall identify, initiate corrective actions, and track until closure
inconsistencies among requirements, project plans, and software products. [SWE-054]

4.1.3.3 The project manager shall perform requirements validation to ensure that the software will
perform as intended in the customer environment. [SWE-055]

4.2 Software Architecture

4.2.1 Experience confirms that the quality and longevity of a software-reliant system is largely
determined by its architecture. The software architecture underpins a system's software design and
code; it represents the earliest design decisions, ones that are difficult and costly to change later.
The transformation of the derived and allocated requirements into the software architecture results
in the basis for all software development work.

4.2.2 A software architecture:

a. Formalizes precise subsystem decompositions.

b. Defines and formalizes the dependencies among software work products within the integrated
system.

c. Serves as the basis for evaluating the impacts of proposed changes.

d. Maintains rules for use by subsequent software engineers that ensure a consistent software
system as the work products evolve.

e. Provides a stable structure for use by future groups through the documentation of the
architecture, its views and patterns, and its rules.

f. Follows strategies created by the NASA Space Asset Protection Program to protect mission
architectures.

4.2.3 The project manager shall develop and record the software architecture. [SWE-057]

4.2.4 The project manager shall perform a software architecture review on the following
categories of projects: [SWE-143]

a. Category 1 Projects as defined in NPR 7120.5.

Page 39 of 79

 NPR 7150.2B

b. Category 2 Projects as defined in NPR 7120.5 that have Class A or Class B payload risk
classification per NPR 8705.4.

4.3 Software Design

4.3.1 Software design is the process of defining the software architecture, components, modules,
interfaces, and data for a software system to satisfy specified requirements. The software
architecture is the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment, and the principles guiding its design and
evolution. The software architectural design is concerned with creating a strong overall structure
for software entities that fulfill allocated system and software-level requirements. Typical views
captured in an architectural design include the decomposition of the software subsystem into
design entities, computer software configuration items, definitions of external and internal
interfaces, dependency relationships among entities and system resources, and finite state
machines. The design should be further refined into lower-level entities that permit the
implementation by coding in a programming language. Typical attributes that are documented for
lower-level entities include: identifier, type, purpose, function, constraints, subordinates,
dependencies, interface, resources, processing, and data. Rigorous specification languages,
graphical representations, and related tools have been developed to support the evaluation of
critical properties at the design level. Projects are encouraged to take advantage of these improved
design techniques to prevent and eliminate errors as early in the life cycle as possible.

4.3.2 The project manager shall develop, record, and maintain the software design. [SWE-056]

4.3.3 The project manager shall develop, record, and maintain a design based on the software
architectural design that describes the lower-level units so that they can be coded, compiled, and
tested. [SWE-058]

4.3.4 The project manager shall perform, record, and maintain bidirectional traceability between
the following: [SWE-059]

a. Software requirements and software architecture.

b. Software architecture and software design.

c. Software requirements and software design.

4.4 Software Implementation

4.4.1 Software implementation consists of implementing the requirements and design into code,
data, and records. Software implementation also consists of following coding methods and
standards. Unit testing is also usually a part of software implementation (unit testing can also be
conducted during the testing phase).

4.4.2 The project manager shall implement the software design into software code. [SWE-060]

Page 40 of 79

 NPR 7150.2B

4.4.3 The project manager shall select, adhere to, and verify software coding methods, standards,
and/or criteria. [SWE-061]

4.4.4 The project manager shall verify the software code by using the results from static analysis
tool(s). [SWE-135]

4.4.5 The project manager shall unit test the software code per the plans for software testing.
[SWE-062]

4.4.6 The project manager shall provide a software version description for each software release.
[SWE-063]

4.4.7 The project manager shall perform, record, and maintain bidirectional traceability from
software design to the software code. [SWE-064]

4.4.8 The project manager shall validate and accredit software tool(s) required to develop or
maintain software. [SWE-136]

4.5 Software Testing

4.5.1 The purpose of testing is to verify the software functionality and remove defects. Testing
verifies the code against the requirements and the design to ensure that the requirements are
implemented. Testing also identifies problems and defects that are corrected and tracked to closure
before product delivery. Testing also validates that the software operates appropriately in the
intended environment. Please note for Class A software, additional software test and integration
requirements exist in NPR 8705.2 beyond those listed below.

4.5.2 The project manager shall establish and maintain: [SWE-065]

a. Software test plan(s).

b. Software test procedure(s).

c. Software test report(s).

4.5.3 The project manager shall perform software testing. [SWE-066]

Note: A best practice for Class A, B, and C software projects is to have formal software testing
planned, conducted, witnessed, and approved by an independent organization outside of the
development team. Testing could include software integration testing, systems integration
testing, validation testing, end-to-end testing, acceptance testing, white and black box testing,
decision and path analysis, statistical testing, stress testing, performance testing, regression
testing, qualification testing, simulation, and others. The use of automated software testing
tools is also to be considered in software testing. Test breadth and accuracy can be increased
through the use of test personnel independent of the software design and implementation
teams, software peer reviews and inspections of software test procedures and software test
results, and employing impartial test witnesses.

Page 41 of 79

 NPR 7150.2B

4.5.4 The project manager shall verify the requirement to the implementation of each software
requirement. [SWE-067]

4.5.5 The project manager shall evaluate test results and record the evaluation. [SWE-068]

4.5.6 The project manager shall record defects identified during testing and track to closure.
[SWE-069]

4.5.7 The project manager shall use validated and accredited software models, simulations, and
analysis tools required to perform qualification of flight software or flight equipment. [SWE-070]

Note: Information regarding specific verification and validation techniques and the analysis of
models and simulations can be found in NASA-STD-7009 and NASA-HDBK-7009.

4.5.8 The project manager shall update software test plan(s) and software test procedure(s) to be
consistent with software requirements. [SWE-071]

4.5.9 The project manager shall provide and maintain bidirectional traceability from the software
test procedures to the software requirements. [SWE-072]

4.5.10 The project manager shall validate the software system on the targeted platform or high-
fidelity simulation. [SWE-073]

Note: Typically, a high-fidelity simulation has the exact processor, processor performance,
timing, memory size, and interfaces as the target system.

4.6 Software Operations, Maintenance, and Retirement

4.6.1 Planning for operations, maintenance, and retirement is typically considered throughout the
software life cycle. Operational concepts and scenarios are derived from customer requirements
and validated in the operational or simulated environment. Software maintenance activities sustain
the software product after the product is delivered to the customer until retirement.

4.6.2 The project manager shall plan and implement software operations, maintenance, and
retirement activities. [SWE-075]

4.6.3 The project manager shall complete and deliver the software product to the customer with
appropriate records, including as-built records, to support the operations and maintenance phase of
the software’s life cycle. [SWE-077]

Page 42 of 79

 NPR 7150.2B

Chapter 5: Supporting Software Life-Cycle Requirements

Unlike development processes, support processes are not targeted primarily at a specific phase of
the project life cycle, but typically occur with similar intensity throughout the complete project or
product life cycle. For example, typical configuration management baselines (e.g., requirements,
code, and products) happen across the life cycle. Support processes are software management and
engineering processes that typically support the entire software life cycle (e.g., configuration
management).

5.1 Software Configuration Management (SCM)

5.1.1 SCM is the process of applying configuration management throughout the software life cycle
to ensure the completeness and correctness of software configuration items. SCM applies technical
and administrative direction and surveillance to: identify and record the functional and physical
characteristics of software configuration items, control changes to those characteristics, record and
report change processing and implementation status, and verify compliance with specified
requirements. SCM establishes and maintains the integrity of the products of a software project
throughout the software life cycle. Use of standard Center or organizational SCM processes and
procedures is encouraged where applicable.

5.1.2 The project manager shall develop a software configuration management plan that describes
the functions, responsibilities, and authority for the implementation of software configuration
management for the project. [SWE-079]

5.1.3 The project manager shall track and evaluate changes to software products. [SWE-080]

5.1.4 The project manager shall identify the software configuration items (e.g., software records,
code, data, tools, models, scripts) and their versions to be controlled for the project. [SWE-081]

5.1.5 The project manager shall establish and implement procedures to: [SWE-082]

a. Designate the levels of control through which each identified software configuration item is
required to pass.

b. Identify the persons or groups with authority to authorize changes.

c. Identify the persons or groups to make changes at each level.

Note: IEEE Standard for Configuration Management in Systems and Software Engineering,
IEEE 828-2012, describes configuration management processes to be established, how they
are to be accomplished, who is responsible for doing specific activities, when they are to
happen, and what specific resources are required. It addresses configuration management
activities over a product's life cycle. Configuration management in systems and software
Engineering is a specialty discipline within the larger discipline of configuration management.
Configuration management is essential to systems engineering and to software engineering.

Page 43 of 79

 NPR 7150.2B

5.1.6 The project manager shall prepare and maintain records of the configuration status of
software configuration items. [SWE-083]

5.1.7 The project manager shall perform software configuration audits to determine the correct
version of the software configuration items and verify that they conform to the records that define
them. [SWE-084]

5.1.8 The project manager shall establish and implement procedures for the storage, handling,
delivery, release, and maintenance of deliverable software products. [SWE-085]

5.2 Software Risk Management

5.2.1 Identification and management of risks provide a basis for systematically examining
changing situations over time to uncover and correct circumstances that impact the ability of the
project to meet its objectives.

5.2.2 The project manager shall identify, analyze, plan, track, control, communicate, and record
software risks and mitigation plans in accordance with NPR 8000.4. [SWE-086]

5.3 Software Peer Reviews and Inspections

5.3.1 Software peer reviews and inspections are the in-process technical examination of work
products by peers to find and eliminate defects early in the life cycle. Software peer reviews and
inspections are performed following defined procedures covering the preparation for the review,
the review itself is conducted, results are recorded, results are reported, and completion criteria is
certified. When planning the composition of a software peer review or inspection team, consider
including software testing, system testing, software assurance, software safety, and software
IV&V personnel.

5.3.2 The project manager shall perform and report the results of software peer reviews or
software inspections for: [SWE-087]

a. Software requirements.

b. Software plans.

c. Any design items that the project identified for software peer review or software inspections
according to the software development plans.

d. Software code as defined in the software and or project plans.

e. Software test procedures.

Note: Software peer reviews or software inspections are a recommended best practice for all
safety and mission-success related software components. Recommended best practices and
guidelines for software formal inspections are contained in NASA-STD-8739.9.

Page 44 of 79

 NPR 7150.2B

5.3.3 The project manager shall, for each planned software peer review or software inspection:
[SWE-088]

a. Use a checklist or formal reading technique (e.g., perspective based reading) to evaluate the
work products.

b. Use established readiness and completion criteria.

c. Track actions identified in the reviews until they are resolved.

d. Identify required participants.

5.3.4 The project manager shall, for each planned software peer review or software inspection,
record basic measurements. [SWE-089]

5.4 Software Measurement

5.4.1 Software measurement is a primary tool for managing software processes and evaluating the
quality of software products. Analysis of measures provides insight into the capability of the
software organization and identifies opportunities for software process and product improvements.
Software measurement programs at multiple levels are established to meet measurement
objectives. The requirements below are designed to reinforce the use of measurement at the
project, Center software organization, and NASA Chief Engineer levels to assist in managing
projects, assuring quality, and improving software engineering practices. Measurement programs
are designed to meet the following goals:

a. Improve future software planning and software cost estimation.

b. Describe and record information about a software product during its life-cycle.

c. Assist usability and maintainability of a software product.

d. Monitor and control life-cycle processes.

e. Communicate information about the system, software product, or service.

f. Provide a history, including lessons learned, during the development and maintenance to support
management and process improvement.

g. Provide evidence that the processes were followed.

h. Provide indicators of software quality.

i. Track the status of software engineering improvement and assurance programs.

j. Report the status of software engineering improvements and assurance programs to Center
software organizations and Center SMA.

Page 45 of 79

 NPR 7150.2B

5.4.2 The project manager shall establish, record, maintain, report, and utilize software
management and technical measurements. [SWE-090]

Note: IEEE Standard Adoption of ISO/IEC 15939 —Systems and Software Engineering—
Measurement Process is a good generic model for developing a software measurement
process for a project or Center. This international standard contains a set of activities and
tasks that comprise a measurement process that meets the specific needs of organizations,
enterprises, and projects. The NASA Chief Engineer may identify and document additional
Center measurement objectives, software measurements, collection procedures and guidelines,
and analysis procedures for selected software projects and software development
organizations. This includes collecting software technical measurement data from the
project’s software supplier(s).

5.4.3 The project manager shall analyze software measurement data collected using documented
project-specified and/or Center/organizational analysis procedures. [SWE-093]

5.4.4 The project manager shall provide access to the software measurement data, measurement
analyses, and software development status as requested to the sponsoring Mission Directorate, the
NASA Chief Engineer, Center and Headquarters SMA, and Center repositories. [SWE-094]

Page 46 of 79

 NPR 7150.2B

Chapter 6: Recommended Software Records Content

6.1 It is possible to prepare a plan, associated procedures, and reports, as well as numerous
records, requests, descriptions, and specifications for each software development life-cycle
process. When deciding how to prepare any of these items, consider the users of the information
first. Reviewing and understanding the requirements, needs, and background of users and
stakeholders are essential to applying the recommendations for content of software records defined
in NASA-HDBK-2203. Specific content within these records may not be applicable for every
project. Use of NASA Center and contractor formats in document deliverables is acceptable if
necessary content (as defined by the project) is addressed. Product records should be reviewed and
updated as necessary. Typical software engineering products or electronic data include:

a. Software Development Plan/Software Management Plan.

b. Software Schedule.

c. Software Cost Estimate.

d. Software Configuration Management Plan.

e. Software Change Reports.

f. Software Test Plans.

g. Software Test Procedures.

h. Software Test Reports.

i. Software Version Description Reports.

j. Software Maintenance Plan.

k. Software Assurance Plan(s).

l. Software Safety Plan, if safety-critical software.

m. Software Requirements Specification.

n. Software Data Dictionary.

o. Software and Interface Design Description (Architectural Design).

p. Software Design Description.

q. Software User's Manual.

http://swehb.nasa.gov/

Page 47 of 79

 NPR 7150.2B

r. Records of Continuous Risk Management for Software.

s. Software Measurement Analysis Results.

t. Record of Software Engineering Trade-off Criteria & Assessments (make/buy decision).

u. Software Acceptance Criteria and Conditions.

v. Software Status Reports.

w. Programmer's/Developer's Manual.

x. Software Reuse Report.

6.2 The recommendations for content of software records are defined in NASA-HDBK-2203. The
Software Engineering handbook also provides guidance regarding when these records should be
drafted, baselined, and updated. Examples and templates for these records and/or data sets are on
the Software Process Across NASA (SPAN) Web site, accessible at https://span.nasa.gov/.

http://swehb.nasa.gov/
https://span.nasa.gov/

Page 48 of 79

 NPR 7150.2B

Appendix A. Definitions

Accredit. The official acceptance of a software development tool, model, or simulation (including
associated data) to use for a specific purpose.

Analysis. The post-processing or interpretation of the individual values, arrays, files of data, or
execution information. It is a careful study of something to learn about its parts, what they do, and
how they are related to each other.

Bidirectional Traceability. Association among two or more logical entities that is discernible in
either direction (to and from an entity). (ISO/IEC/IEEE 24765 Systems and software engineering-
Vocabulary)

Computer. Functional unit that can perform substantial computations, including numerous
arithmetic operations and logic operations.

Computer Software Configuration Item. An aggregation of software that is designated for
configuration management and treated as a single entity in the configuration management process.

Computer System. A system containing one or more computers and associated software. (Source:
ISO/IEC/IEEE 24765 Systems and software engineering-Vocabulary)

Contracted Software. Software created for a project by a contractor or subcontractor.

Data. Information for computer processing (e.g., numbers, text, images, and sounds in a form that
is suitable for storage in or processing by a computer).

Deviation. A documented authorization releasing a program or project from meeting a
requirement before the requirement is put under configuration control at the level the requirement
will be implemented.

Embedded Computer System. A computer system that is part of a larger system and performs
some of the requirements of that system. (Source: ISO/IEC/IEEE 24765 Systems and software
engineering-Vocabulary)

Embedded Software. Software that is part of a larger system and performs some of the
requirements of that system. (Source: ISO/IEC 24765 Systems and software engineering-
Vocabulary)

Establish and Maintain. Formulation, documentation, use/deployment, and current maintenance
of the object (usually a document, requirement, process, or policy) by the responsible project,
organization, or individual.

Page 49 of 79

 NPR 7150.2B

Glueware. Software created to connect the off-the-shelf software/reused software with the rest of
the system. It may take the form of "adapters" that modify interfaces or add missing functionality,
"firewalls" that isolate the off-the-shelf software, or "wrappers" that check inputs and outputs to
the off-the-shelf software and may modify to prevent failures.

Government Off-the-Shelf Software. This refers to Government-created software, usually from
another project. The software was not created by the current developers (see software reuse).
Usually, source code is included and documentation, including test and analysis results, is
available; e.g., the Government is responsible for the Government off-the-shelf (GOTS) software
to be incorporated into another system.

Highly Specialized Information Technology — Highly Specialized IT is a part of, internal to, or
embedded in a mission platform. The platform's function (e.g., avionics, guidance, navigation,
flight controls, simulation, radar, etc.) is enabled by IT but not driven by IT itself (e.g., computer
hardware and software to automate internal functions of a spacecraft or spacecraft support system
such as spacecraft control and status, sensor signal and data processing, and operational tasking.)
Highly Specialized IT acquisitions may include full development (where the information
technology is a primary issue) to modification of existing systems (information architecture is firm
and demonstrated in an operational environment) where information technology is not an issue.
Real time is often critical — and few opportunities exist to use Commercial Off The Shelf (COTS)
or Government Off The Shelf (GOTS) beyond microprocessors and operating systems because
these systems are largely unprecedented or largely unique applications. Certain IT considered
Mission Critical because the loss of which would cause the stoppage of mission operations
supporting real—time on—orbit mission operations is identified as "Highly Specialized" by the
Directorate Associate Administrator. Highly Specialized IT is largely custom, as opposed to
COTS or commodity IT systems or applications, and includes coding/applications that are integral
parts of the research or science requirements, e.g., Shuttle Avionics Upgrade. Common
engineering IT tools such as Product Life cycle Management (PLM) systems, Computer-Aided
Design (CAD) systems, and collaborative engineering systems and environments are not Highly
Specialized IT. Representative examples of Highly Specialized IT include: Avionics software,
real-time control systems, onboard processors, Deep Space Network, spacecraft instrumentation
software, wind tunnel control system, human physiology monitoring systems, ground support
environment, experiment simulators, Mission Control Center, and Launch cameras. (Source:
NPR2800.1, Managing Information Technology)

Independent Verification and Validation. Verification and validation performed by an
organization that is technically, managerially, and financially independent of the development
organization. (Source: ISO/IEC 24765 systems and software engineering vocabulary)

Information Technology. Any equipment or interconnected system(s) or subsystem(s) of
equipment that is used in the automatic acquisition, storage, analysis, evaluation, manipulation,
management, movement, control, display, switching, interchange, transmission, or reception of
data or information by the Agency (reference FAR 2.101). (Source: NPR2800.1, Managing
Information Technology)

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Page 50 of 79

 NPR 7150.2B

Insight. An element of Government surveillance that monitors contractor compliance using
Government-identified metrics and contracted milestones. Insight is a continuum that can range
from low intensity such as reviewing quarterly reports to high intensity such as performing
surveys and reviews. (Source: NPR 7123.1B)

Legacy and Heritage. Software products (architecture, code, requirements) written specifically
for one project and then, without prior planning during its initial development, found to be useful
on other projects. See software reuse.

Major Engineering/Research Facility. Used in this document to show research, development,
test, or simulation facilities representing a significant NASA investment (facilities with a Current
Replace Value (CRV) equal to or greater than 50 million dollars) which contains software that
supports programs and projects managed under NPR 7120.5, NPR 7120.7, or NPR 7120.8 and that
have a Mission Dependency Index value equal to or greater than 70.

Mission Critical. Item or function that should retain its operational capability to assure no mission
failure (i.e., for mission success - meeting all mission objectives and requirements for performance
and safety). (Source: NPR 8715.3)

Model. A description or representation of a system, entity, phenomena, or process. (Source:
NASA-STD-7009) Only for the purpose of this document, the term "model" refers to only those
models that are implemented in software.

Modified Off-the-Shelf Software. When COTS or legacy and heritage software is reused, or
heritage software is changed, the product is considered "modified." The changes can include all or
part of the software products and may involve additions, deletions, and specific alterations. An
argument can be made that any alterations to the code and/or design of an off-the-shelf software
component constitutes "modification," but the common usage allows for some percentage of
change before the off-the-shelf software is declared to be modified off-the-shelf (MOTS) software.
This may include the changes to the application shell and/or glueware to add or protect against
certain features and not to the off-the-shelf software system code directly. See off-the-shelf
software.

Off-the-Shelf Software. Software not developed in-house or by a contractor for the specific
project now underway. The software is generally developed for a purpose different from the
current project. Used in practice as umbrella for COTS, GOTS, and MOTS.

Open-Source Software. Software where its human-readable source code is made broadly
available without cost under an OSS license, which provides conditions on use, reuse,
modification/improvement, and redistribution; and often where the software development,
management, and planning is done publicly, or easily observable by an individual or organization
not previously connected with its open source project.

Operational Software. Software that has been accepted and deployed, has been delivered to its
customer, or is deployed in its intended environment.

Page 51 of 79

 NPR 7150.2B

Primary Mission Objectives. Outcomes expected to be accomplished, which are closely
associated with the reason the mission was proposed, funded, developed, and operated (e.g.,
objectives related to top-level requirements or their flow down).

Process Asset Library. A collection of process asset holdings that may be used by an
organization or project. (Source: CMMI® for Systems Engineering/Software
Engineering/Integrated Product and Process Development Supplier Sourcing)

Program. A strategic investment by a Mission Directorate or Mission Support Office that has a
defined architecture and/or technical approach, requirements, funding level, and a management
structure that initiates and directs one or more projects. A program defines a strategic direction
that the Agency has identified as critical.

Project. A specific investment having defined goals, objectives, requirements, life-cycle cost, a
beginning, and an end. A project yields new or revised products or services that directly address
NASA’s strategic needs. They may be performed wholly in-house; by Government, industry,
academia partnerships; or through contracts with private industry.

Risk Management. An organized, systematic decision-making process that efficiently identifies,
analyzes, plans, tracks, controls, communicates, and documents risk to increase the likelihood of
achieving program/project goals. (Source: NPR 8715.3)

Safety-Critical Software. See description in NASA-STD-8719.13.

Scripts. A sequence of automated computer commands embedded in a program that tells the
program to execute a specific procedure (e.g., files with monitoring, logic, or commands used by
software to automate a process or procedure).

Simulation. The imitation of the characteristics of a system, entity, phenomena, or process using a
computational model. (Source: NASA-STD-7009) Only for the purpose of this document, the
term "simulation" refers to only those simulations that are implemented in software.

Software. Computer programs, procedures, scripts, rules, and associated documentation and data
pertaining to the development and operation of a computer system. This definition applies to
software developed by NASA, software developed for NASA, commercial-off-the-shelf (COTS)
software, Government-off-the-shelf (GOTS) software, modified-off-the-shelf (MOTS) software,
reused software, auto-generated code, embedded software, the software executed on processors
embedded in Programmable Logic Devices (see NASA-HDBK-4008), and open-source software
components.

Software Architecture. The software architecture of a program or computing system is the
structure or structures of the system, which comprise software components, the properties of those
components, and the relationships between them. The term also refers to documentation of a
system's software architecture. Documenting software architecture facilitates communication
between stakeholders, documents early decisions about high-level design, and allows reuse of
design components and patterns between projects.

Page 52 of 79

 NPR 7150.2B

Software Assurance. The planned and systematic set of activities that ensure that software life-
cycle processes and products conform to requirements, standards, and procedures. For NASA, this
includes the disciplines of software quality (functions of software quality engineering, software
quality assurance, and software quality control), software safety, software reliability, software
verification and validation, and IV&V.

Software Engineering. The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software, i.e., the application of engineering to
software. (Source: IEEE 24765, Systems and software engineering-Vocabulary, paragraph 3.2760)

Software Item. Source code, object code, control code, control data, or a collection of these items.

Software Peer Review and Inspection. A visual examination of a software product to detect and
identify software anomalies, including errors and deviations from standards and specifications.
(Source: IEEE 1028, IEEE Standard for Software Reviews and Audits). Refer to NASA-STD-
8739.9 for guidelines for software peer reviews or inspections.

Software Reuse. A software product developed for one use but having other uses or one
developed specifically to be usable on multiple projects or in multiple roles on one project.
Examples include, but are not limited to, COTS products, acquirer-furnished software products,
software products in reuse libraries, and pre-existing developer software products. Each use may
include all or part of the software product and may involve its modification. This term can be
applied to any software product (such as requirements and architectures), not just to software code
itself. Often, this is software previously written by an in-house development team and used on a
different project. GOTS software would come under this category if the product is supplied from
one Government project to another Government project.

Software Validation. Confirmation that the product, as provided (or as it will be provided),
fulfills its intended use. In other words, validation ensures that “you built the right thing.” (Source:
IEEE 1012, IEEE Standard for Software Verification and Validation)

Software Verification. Confirmation that work products properly reflect the requirements
specified for them. In other words, verification ensures that “you built it right.” (Source: IEEE
1012, IEEE Standard for Software Verification and Validation)

Static Analysis. The process of evaluating a system or component based on its form, structure,
content, or documentation. (Source: ISO/IEC 24765, Systems and software engineering
vocabulary)

Subsystem. A secondary or subordinate system within a larger system. (Source: ISO/IEC 24765,
Systems and software engineering-Vocabulary)

System. The combination of elements that function together to produce the capability required to
meet a need. The elements include hardware, software, equipment, facilities, personnel, processes,
and procedures needed for this purpose. (Source: NPR 7123.1)

http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Page 53 of 79

 NPR 7150.2B

Tailoring. The process used to adjust or seek relief from a prescribed requirement to
accommodate the needs of a specific task or activity (e.g., program or project). The tailoring
process results in the generation of deviations and waivers depending on the timing of the request.

Uncertainty. (1) The estimated amount or percentage by which an observed or calculated value
may differ from the true value. (2) A broad and general term used to describe an imperfect state of
knowledge or a variability resulting from a variety of factors including, but not limited to, lack of
knowledge, applicability of information, physical variation, randomness or stochastic behavior,
indeterminacy, judgment, and approximation. (Source: NPR 8000.4)

Unit Test. (1) Testing of individual routines and modules by the developer or an independent
tester (ISO/IEC/IEEE 24765 Systems and software engineering--Vocabulary) (2) A test of
individual programs or modules in order to ensure that there are no analysis or programming
errors (ISO/IEC 2382-20 Information technology--Vocabulary--Part 20: System development,
20.05.05) (3) Test of individual hardware or software units or groups of related units.
(ISO/IEC/IEEE 24765 Systems and software engineering--Vocabulary)

Waiver. A documented authorization releasing a program or project from meeting a requirement
after the requirement is put under configuration control at the level the requirement will be
implemented.

Wrapper. See glueware definition.

Page 54 of 79

 NPR 7150.2B

Appendix B. Acronyms

BPR Baseline Performance Review
CAD/CAM Computer-Aided Design/and Computer-Aided Manufacturing
CE Chief Engineer
CHMO Chief Health and Medical Officer
CIO Chief Information Officer
CMMI® Capability Maturity Model® Integration
CMMI-DEV Capability Maturity Model® Integration® (CMMI®) for Development
CMU Carnegie Mellon University
COTS Commercial off-the-Shelf
CSCI Computer Software Configuration Item
CSMA Chief, Safety and Mission Assurance
EDL Entry, Descent, and Landing
ETA Engineering Technical Authority
EVA Extra Vehicular Activity
FAR Federal Acquisition Regulations
GOTS Government-off-the-Shelf
HDBK Handbook
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
IPEP IV&V Project Execution Plan
IT Information Technology
IV&V Independent Verification and Validation
JPL Jet Propulsion Laboratory
KDP Key Decision Point
KLSOC Kilo/Thousand Source Lines of Code
MOTS Modified off-the-Shelf
NASA National Aeronautics and Space Administration
NESC NASA Engineering and Safety Center
NPD NASA Policy Directive
NPR NASA Procedural Requirements
OCE Office of the Chief Engineer
OSMA Office of Safety and Mission Assurance
OSS Open Source Software
PLD Programmable Logic Devices
SCAMPISM Standard CMMI® Appraisal Method for Process Improvement
SCM Software Configuration Management
SEI Software Engineering Institute
SMA Safety and Mission Assurance
SMSR Safety and Mission Success Review
SOW Statement of Work
SPAN Software Process Across NASA

Page 55 of 79

 NPR 7150.2B

SRR Software Requirements Review
SWE Software Engineering
WBS Work Breakdown Structure

Page 56 of 79

 NPR 7150.2B

Appendix C. Requirements Mapping and Compliance Matrix

C.1 The rationale for the requirements is contained in the NASA Software Engineering Handbook,
NASA-HDB-2203. Programs/Projects may substitute a matrix that documents their compliance
with their particular Center's implementation of NPR 7150.2, if applicable. See NASA-HDBK-
2203 for compliance matrices organized by class and safety-criticality, tailoring field for each
requirement, tailoring rationale, and approval signature lines.

C.2 The Compliance Matrix documents the program/project's compliance or intent to comply with
the requirements of this NPR or justification for tailoring. The matrix lists:

a. The unique requirement identifier.

b. The section reference.

c. The NPR 7150.2 requirement statement.

d. The Technical Authority Level responsible for assessing a project’s compliance matrices,
tailoring, waivers, and deviations from requirements in this NPR.

e. The requirement owner (the organization or individual responsible for the requirement).

f. The applicability of the requirements in this NPR to specific systems and subsystems within the
Agency’s investment areas, programs, and projects is determined through the use of the NASA-
wide definition of software classes.

C.3 Tailoring Guidance

X - Indicates an invoked requirement by this NPR consistent with Software Classification (ref.
SWE-139). May be tailored with Technical Authority approval (ref. Chapter 2.2).

Blank - Optional/Not invoked by this NPR.

X (not OTS) - Does not apply to Off the Shelf (OTS), Commercial Software.

Center Director - Center Director or the Center Director’s designated Engineering Technical
Authority or Center Director's designated Safety and Mission Assurance Technical Authority.

Note 1 - Project is required to meet this requirement to the extent necessary to satisfy safety
critical aspects of the software. All Safety-critical software has to be classified as Class D or
Higher.
Note 2 - Applies to Class B software except for Class B software on NASA Class D payloads,
as defined in NPR 8705.4. For Class B software, in lieu of a CMMI rating by a development
organization, the project will conduct an evaluation, performed by a qualified evaluator

Page 57 of 79

 NPR 7150.2B

selected by the Center Engineering Technical Authority, of the seven process areas listed in
SWE-032 and mitigate any risk, if deficient. This exception is intended to be used in those
cases in which NASA wishes to purchase a product from the "best of class provider," but the
best of class provider does not have the required CMMI rating. When this exception is
exercised, the Center Engineering Technical Authority should be notified.

Note 3 - For tailoring of NASA-STD-8739.8 and NASA-STD-8719.13, the Software Assurance
Standard and the Software Safety Standard respectively, use the tailoring provided within
those documents. They are both risk based and Software Class based tailoring.

Note 4 - The Technical Authority implementation responsibilities for Class F software is at the
NASA Headquarters Chief Information Officer (CIO) level, the Technical Authority
implementation responsibilities for Class G and H is at the Center CIO organization level or
at the level defined in the Center Technical Authority implementation plan. All Safety-critical
software has to be classified as Class D or higher.

Page 58 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

2.1.3.6 145

W e t e co p a ce at s used to wa ve/dev ate o app cab e
“X” requirement(s), the designated Technical Authorities shall indicate
their approval by signature(s) in the compliance matrix itself. Center Level Project X X X X X HQ OCIO X Center CIO X X

2.2.4 121

Where approved, the project manager shall document and reflect the
tailored requirement in the plans or procedures controlling the
development, acquisition, and/or deployment of the affected software. Center Level Project X X X X HQ OCIO X Center CIO X X

2.2.5 125

Each project manager with software components shall maintain a
compliance matrix or multiple compliance matrices against requirements
in this NPR, including those delegated to other parties or accomplished
by contract vehicles or Space Act Agreements. Center Level Project X X X X X HQ OCIO X Center CIO X X

2.2.6 139

The projects shall comply with the requirements in this NPR that are
marked with a “project” responsibility and an ”X” in Appendix C
consistent with their software classification. Center Level Project X X X X X HQ OCIO X Center CIO X X

3.1.2 13

The project manager shall develop, maintain, and execute software plans
that cover the entire software life cycle and, as a minimum, address the
requirements of this directive with approved tailoring. Center Level Project X X X X X HQ OCIO X Center CIO X

3.1.3 24
The project manager shall track the actual results and performance of
software activities against the software plans. Center Level Project X X X X HQ OCIO X Center CIO X

3.2.1 15

The project manager shall establish, document, and maintain two cost
estimates and associated cost parameters for all software Class A and B
projects that have an estimated project cost of $2 million or more or one
software cost estimate and associated cost parameter(s) for other
software projects. Center Level Project X X X X HQ OCIO Center CIO

3.2.2 151

The project manager‘s software cost estimate(s) shall satisfy the
following conditions:
a. Covers the entire software life cycle.
b. Is based on selected project attributes (e.g., assessment of the size,
functionality, complexity, criticality, reuse code, modified code, and risk
of the software processes and products).
c. Is based on the cost implications of the technology to be used and the
required maturation of that technology.
d. Incorporates risk and uncertainty.
e. Includes the cost for software assurance support.
f. Includes other direct costs. Center Level Project X X X X HQ OCIO Center CIO

3.3.1 16

The project manager shall document and maintain a software schedule
that satisfies the following conditions:
a. Coordinates with the overall project schedule.
b. Documents the interactions of milestones and deliverables between
software, hardware, operations, and the rest of the system.
c. Reflects the critical path for the software development activities.
d. Adhere to the guidance provided in NASA/SP-2010-3403, NASA
Scheduling Management Handbook. Center Level Project X X X X HQ OCIO X Center CIO X

Software ClassSoftware Class

Page 59 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

3.3.2 18

The project manager shall regularly hold reviews of software activities,
status, and results with the project stakeholders and track issues to
resolution. Center Level Project X X X X HQ OCIO X Center CIO X

3.3.3 19

The project manager shall select and document a software development
life cycle or model that includes phase transition criteria for each life
cycle phase. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X (not OTS)

3.4.1 17
The project manager shall plan, track, and ensure project specific
software training for project personnel. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

3.5.1 20

The project manager shall classify each system and subsystem containing
software in accordance with the highest applicable software classification
definitions for Classes A, B, C, D, E, F, G, and H software in Appendix
D. Center Level Project X X X X X HQ OCIO X Center CIO X X

3.5.2 132
The project’s software assurance manager shall perform an independent
classification assessment. Center Level Project X X X X X HQ OCIO X Center CIO X X

3.5.3 133

The project manager, in conjunction with the Safety and Mission
Assurance organization, shall determine the software safety criticality in
accordance with NASA-STD-8719.13.

Project and
Center SMA

Project and
Center
S&MA X X X X X HQ OCIO X Center CIO X X

3.5.4 21

If a system or subsystem evolves to a higher or lower software
classification as defined in Appendix D, or there is a change in the safety
criticality of the software, then the project manager shall update their plan
to fulfill the applicable requirements per the Requirements Mapping and
Compliance Matrix in Appendix C and any approved tailoring. Center Level Project X X X X X HQ OCIO X Center CIO X X

3.5.5 160
If a software component is determine to be safety critical software then
software component classification shall be Software Class D or higher. Center Level Project X X X X X HQ OCIO X Center CIO X X

3.6.1 22
The project manager shall plan and implement software assurance per
NASA-STD-8739.8. Center Level

Project and
Center
S&MA
(Note 3) X X X X HQ OCIO Center CIO

3.6.2 141

For projects reaching KDP A after the effective date of this directive’s
revision, the program manager shall ensure that software IV&V is
performed on the following categories of projects:
a. Category 1 projects as defined in NPR 7120.5.
b. Category 2 projects as defined in NPR 7120.5 that have Class A or
Class B payload risk classification per NPR 8705.4.
c. Projects specifically selected by the NASA Chief, Safety and Mission
Assurance (SMA) to have software IV&V.

HQ OCE and
HQ OSMA

Project and
Center
S&MA HQ OCIO Center CIO

3.6.3 131
If software IV&V is performed on a project, project manager shall ensure
that an IV&V Project Execution Plan (IPEP) is developed.

Center and the
Center SMA
organization

Project and
Center
S&MA X X X HQ OCIO X Center CIO X

3.7.1 23
When a project is determined to have safety-critical software, the project
manager shall implement the requirements of NASA-STD-8719.13. Center Level

Project and
Center
S&MA
(Note 3) X X

X
*(SC only)

X
*(SC only) HQ OCIO Center CIO

Software ClassSoftware Class

Per selection criteria defined in the SWE-
141 requirement

Page 60 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

When a project is determined to have safety-critical software, the project
manager shall implement the following items in the software:
a. Safety-critical software is initialized, at first start and at restarts, to a
known safe state.
b. Safety-critical software safely transitions between all predefined known
states.
c. Termination performed by software of safety critical functions is
performed to a known safe state.
d. Operator overrides of safety-critical software functions require at least
two independent actions by an operator.
e. Safety-critical software rejects commands received out of sequence,
when execution of those commands out of sequence can cause a hazard.
f. Safety-critical software detects inadvertent memory modification and
recovers to a known safe state.
g. Safety-critical software performs integrity checks on inputs and
outputs to/from the software system.
h. Safety-critical software performs prerequisite checks prior to the
execution of safety-critical software commands.
i. No single software event or action is allowed to initiate an identified
hazard.

3.7.2 134

j. Safety-critical software responds to an off nominal condition within the
time needed to prevent a hazardous event.
k. Software provides error handling of safety-critical functions.
l. Safety-critical software has the capability to place the system into a safe
state.
m. Safety-critical elements (requirements, design elements, code
components, and interfaces) are uniquely identified as safety-critical.
n. Requirements are incorporated in the coding methods, standards,
and/or criteria to clearly identify safety-critical code and data within
source code comments.

Center and the
Center SMA
organization

Project and
Center
S&MA X X

X
*(SC only)

X
*(SC only) HQ OCIO Center CIO

3.8.1 146

The project manager shall define the approach to the automatic generation
of software source code including:
a. Validation and verification of auto-generation tools.
b. Configuration management of the auto-generation tools and associated
data.
c. Identification of the allowable scope for the use of auto-generated
software.
d. Verification and validation of auto-generated source code.
e. Monitoring the actual use of auto-generated source code compared to
the planned use.
f. Policies and procedures for making manual changes to auto-generated
source code.
g. Configuration management of the input to the auto-generation tool, the
output of the auto-generation tool, and modifications made to the output
of the auto-generation tools. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

Software ClassSoftware Class

Page 61 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

3.9.2 27

The project manager shall satisfy the following conditions when a COTS,
GOTS, MOTS, or reused software component is acquired or used:
a. The requirements to be met by the software component are identified.
b. The software component includes documentation to fulfill its intended
purpose (e.g., usage instructions).
c. Proprietary rights, usage rights, ownership, warranty, licensing rights,
and transfer rights have been addressed.
d. Future support for the software product is planned and adequate for
project needs.
e. The software component is verified and validated to the same level
required to accept a similar developed software component for its
intended use.
f. The project has a plan to perform periodic assessments of vendor
reported defects to ensure the defects do not impact the selected
software components. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

3.10.2 28
The project manager shall plan software verification activities, methods,
environments, and criteria for the project. Center Level Project X X X X HQ OCIO X Center CIO X

3.10.3 29
The project manager shall plan the software validation activities, methods,
environments, and criteria for the project. Center Level Project X X X X HQ OCIO X Center CIO X

3.10.4 30
The project manager shall record, address, and track to closure the
results of software verification activities. Center Level Project X X X X HQ OCIO X Center CIO X

3.10.5 31
The project manager shall record, address, and track to closure the
results of software validation activities. Center Level Project X X X X HQ OCIO X Center CIO X

3.11.3 32

The project manager shall acquire, develop, and maintain software from
an organization with a non-expired Capability Maturity Model®
Integration for Development (CMMI-DEV) rating as measured by a
CMMI Institute authorized or certified lead appraiser as follows:
a. For Class A software: CMMI-DEV Maturity Level 3 Rating or higher
for software, or CMMI-DEV Capability Level 3 Rating or higher in all
CMMI-DEV Maturity Level 2 and 3 process areas for software.
b. For Class B software on NASA payloads with risk classifications A,
B, and C, as defined in NPR 8705.4: CMMI-DEV Maturity Level 2
Rating or higher for software, or CMMI-DEV Capability Level 2 Rating
or higher for software in the following process areas:
(1) Requirements Management.
(2) Configuration Management.
(3) Process and Product Quality Assurance.
(4) Measurement and Analysis.
(5) Project Planning.
(6) Project Monitoring and Control.
(7) Supplier Agreement Management (if applicable).

HQ OCE and
HQ OSMA Project X

X
(Note 2) HQ OCIO Center CIO

3.12.2 33
The project manager shall assess options for software acquisition versus
development. Center Level Project X X X X HQ OCIO X Center CIO X

3.12.3 34
The project manager shall define and document the acceptance criteria
and conditions for the software. Center Level Project X X X X HQ OCIO X Center CIO X

Software ClassSoftware Class

Page 62 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

3.12.4 35
The project manager shall establish a procedure for software supplier
selection, including proposal evaluation criteria. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO

3.12.5 36

The project manager shall determine which software processes, software
documents, electronic products, software activities, and tasks are
required for the project and software suppliers. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X (not OTS)

3.12.6 37

The project manager shall define the milestones at which the software
supplier(s) progress will be reviewed and audited as a part of the
acquisition activities. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X (not OTS)

3.12.7 38
The project manager shall document software acquisition planning
decisions. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X (not OTS)

3.12.8 39

The project manager shall require the software supplier(s) to provide
insight into software development and test activities; at a minimum, the
software supplier(s) will be required to allow the project manager or
designate to:
a. Monitor product integration.
b. Review the verification activities to ensure adequacy.
c. Review trades studies and source data.
d. Audit the software development process.
e. Participate in software reviews and systems and software technical
interchange meetings. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X (not OTS)

3.12.9 40

The project manager shall require the software supplier(s) to provide
NASA with software products and software process tracking
information, in electronic format, including software development and
management metrics. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

3.12.10 42

The project manager shall require the software supplier(s) to provide
NASA with electronic access to the source code developed for the
project in a modifiable format, including MOTS software and non-flight
software (e.g., ground test software, simulations, ground analysis
software, ground control software, science data processing software, and
hardware manufacturing software). Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

3.13.1 43

The project manager shall require the software supplier to track software
changes and non-conformances and provide the data for the project's
review. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

3.13.2 45

The project manager shall participate in any joint NASA/supplier audits of
the software development process and software configuration
management process. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

3.13.3 46

The project manager shall require the software supplier(s) to provide a
software schedule for the project's review and schedule updates as
requested. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X (not OTS)

3.13.4 47

The project manager shall require the software supplier(s) to make
electronically available the software traceability data for the project's
review. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

3.14.2 147

The project manager shall specify reusability requirements that apply to
its software development activities to enable future reuse of the software,
including models used to generate the software. Center Level Project X X X HQ OCIO X Center CIO X

Software ClassSoftware Class

Page 63 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

3.14.3 148

The project manager shall evaluate software for potential reuse by other
projects across the Agency and contribute reuse candidates to the
Agency Software Catalog. Center Level Project X X X X HQ OCIO X Center CIO X

3.15.2 149

The project manager shall ensure that when an open source software
component is acquired or used, the following conditions are satisfied:
a. The requirements that are to be met by the software component are
identified.
b. The software component includes documentation to fulfill its intended
purpose (e.g., usage instructions).
c. Proprietary, usage, ownership, warranty, licensing rights, and transfer
rights have been addressed.
d. Future support for the software product is planned and adequate for
project needs.
e. The software component is verified and validated to the same level
required to accept a similar developed software component for its
intended use. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

3.15.3 41

The project manager shall require the software supplier(s) to notify the
project, in the response to the solicitation, as to whether or not open
source software will be included in code developed for the project. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

3.16.2 154

The project manager shall ensure that mission and safety critical software
systems are identified and security risk mitigations are planned for these
systems in the Project Protection Plan. Center Level Project X X X HQ OCIO Center CIO

3.16.3 155
The project manager shall implement the identified software security risk
mitigations addressed in the Project Protection Plan. Center Level Project X X X HQ OCIO Center CIO

3.16.4 156

The project manager shall ensure and document that all systems including
software are evaluated for security risks, including risks posed by the use
of COTS, GOTS, MOTS, Open Source, and reused software. Center Level Project X X X HQ OCIO Center CIO

3.16.5 157
The project manager shall ensure that software systems with space
communications capabilities are protected against un-authorized access. Center Level Project X X X HQ OCIO Center CIO

3.16.6 158
The project manager shall ensure that the software systems are assessed
for possible security vulnerabilities and weaknesses. Center Level Project X X X HQ OCIO Center CIO

3.16.7 159

The project manager shall verify and validate the required software
security risk mitigations to ensure that security objectives identified in the
Project Protection Plan for software are satisfied in their implementation. Center Level Project X X X HQ OCIO Center CIO

4.1.2.1 50

The project manager shall establish, capture, record, approve, and
maintain software requirements, including the software quality
requirements, as part of the technical specification. Center Level Project X X X X X HQ OCIO X Center CIO X X

4.1.2.2 51

The project manager shall perform software requirements analysis based
on flowed-down and derived requirements from the top-level systems
engineering requirements and the hardware specifications and design. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

Software ClassSoftware Class

Page 64 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

4.1.2.3 52

The project manager shall perform, record, and maintain bidirectional
traceability between the software requirement and the higher-level
requirement. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

4.1.3.1 53
The project manager shall track and manage changes to the software
requirements. Center Level Project X X X X HQ OCIO X Center CIO X

4.1.3.2 54

The project manager shall identify, initiate corrective actions, and track
until closure inconsistencies among requirements, project plans, and
software products. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

4.1.3.3 55
The project manager shall perform requirements validation to ensure that
the software will perform as intended in the customer environment. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

4.2.3 57 The project manager shall develop and record the software architecture. Center Level Project X X X HQ OCIO X (not OTS) Center CIO X(not OTS)

4.2.4 143

The project manager shall perform a software architecture review on the
following categories of projects:
a. Category 1 Projects as defined in NPR 7120.5.
b. Category 2 Projects as defined in NPR 7120.5 that have Class A or
Class B payload risk classification per NPR 8705.4. Center Level Project HQ OCIO Center CIO

4.3.2 56
The project manager shall develop, record, and maintain the software
design. Center Level Project X X X HQ OCIO X (not OTS) Center CIO X(not OTS)

4.3.3 58

The project manager shall develop, record, and maintain a design based
on the software architectural design that describes the lower-level units so
that they can be coded, compiled, and tested. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X(not OTS)

4.3.4 59

The project manager shall perform, record, and maintain bidirectional
traceability between the following:
a. Software requirements and software architecture.
b. Software architecture and software design.
c. Software requirements and software design. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X(not OTS)

4.4.2 60
The project manager shall implement the software design into software
code. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X(not OTS)

4.4.3 61
The project manager shall select, adhere to, and verify software coding
methods, standards, and/or criteria. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X(not OTS)

4.4.4 135
The project manager shall verify the software code by using the results
from static analysis tool(s). Center Level Project X X X

X
*(SC only) HQ OCIO Center CIO

4.4.5 62
The project manager shall unit test the software code per the plans for
software testing. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X(not OTS)

4.4.6 63
The project manager shall provide a software version description for each
software release. Center Level Project X X X X HQ OCIO X (not OTS) Center CIO X(not OTS)

4.4.7 64
The project manager shall perform, record, and maintain bidirectional
traceability from software design to the software code. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X(not OTS)

4.4.8 136
The project manager shall validate and accredit software tool(s) required
to develop or maintain software. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

4.5.2 65

The project manager shall establish and maintain:
a. Software test plan(s).
b. Software test procedure(s).
c. Software test report(s). Center Level Project X X X X HQ OCIO X Center CIO X

Software ClassSoftware Class

Per selection criteria defined in the SWE-
143 requirement

Page 65 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

4.5.3 66 The project manager shall perform software testing. Center Level Project X X X X HQ OCIO X Center CIO X

4.5.4 67
The project manager shall verify the requirement to the implementation of
each software requirement. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

4.5.5 68 The project manager shall evaluate test results and record the evaluation. Center Level Project X X X X HQ OCIO X Center CIO X

4.5.6 69
The project manager shall record defects identified during testing and
track to closure. Center Level Project X X X X HQ OCIO Center CIO X

4.5.7 70

The project manager shall use validated and accredited software models,
simulations, and analysis tools required to perform qualification of flight
software or flight equipment. Center Level Project X X X HQ OCIO Center CIO

4.5.8 71
The project manager shall update software test plan(s) and software test
procedure(s) to be consistent with software requirements. Center Level Project X X X X HQ OCIO X Center CIO X

4.5.9 72
The project manager shall provide and maintain bidirectional traceability
from the software test procedures to the software requirements. Center Level Project X X X HQ OCIO X Center CIO X

4.5.10 73
The project manager shall validate the software system on the targeted
platform or high-fidelity simulation. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

4.6.2 75
The project manager shall plan and implement software operations,
maintenance, and retirement activities. Center Level Project X X X X HQ OCIO X Center CIO X

4.6.3 77

The project manager shall complete and deliver the software product to
the customer with appropriate records, including as-built records, to
support the operations and maintenance phase of the software’s life
cycle. Center Level Project X X X X X HQ OCIO X Center CIO X X

5.1.2 79

The project manager shall develop a software configuration management
plan that describes the functions, responsibilities, and authority for the
implementation of software configuration management for the project. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

5.1.3 80
The project manager shall track and evaluate changes to software
products. Center Level Project X X X X HQ OCIO X Center CIO X

5.1.4 81

The project manager shall identify the software configuration items (e.g.,
software records, code, data, tools, models, scripts) and their versions to
be controlled for the project. Center Level Project X X X X HQ OCIO X Center CIO X

5.1.5 82

The project manager shall establish and implement procedures to:
a. Designate the levels of control through which each identified software
configuration item is required to pass.
b. Identify the persons or groups with authority to authorize changes.
c. Identify the persons or groups to make changes at each level. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X X

5.1.6 83
The project manager shall prepare and maintain records of the
configuration status of software configuration items. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X X

5.1.7 84

The project manager shall perform software configuration audits to
determine the correct version of the software configuration items and
verify that they conform to the records that define them. Center Level Project X X X

X
*(SC only) HQ OCIO X Center CIO X

5.1.8 85

The project manager shall establish and implement procedures for the
storage, handling, delivery, release, and maintenance of deliverable
software products. Center Level Project X X X X HQ OCIO X Center CIO X X

Software ClassSoftware Class

Page 66 of 79

 NPR 7150.2B

Software
Class

Section
NPR

SWE # Requirement Text
Technical
Authority Responsibility A B C D E

Technical
Authority

F
(Note 4)

Technical
Authority

G
(Note 4)

H
(Note 4)

5.2.2 86

The project manager shall identify, analyze, plan, track, control,
communicate, and record software risks and mitigation plans in
accordance with NPR 8000.4. Center Level Project X X X HQ OCIO X Center CIO X

5.3.2 87

The project manager shall perform and report the results of software peer
reviews or software inspections for:
a. Software requirements.
b. Software plans.
c. Any design items that the project identified for software peer review or
software inspections according to the software development plans.
d. Software code as defined in the software and or project plans.
e. Software test procedures. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

5.3.3 88

The project manager shall, for each planned software peer review or
software inspection:
a. Use a checklist or formal reading technique (e.g., perspective based
reading) to evaluate the work products.
b. Use established readiness and completion criteria.
c. Track actions identified in the reviews until they are resolved.
d. Identify required participants. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

5.3.4 89
The project manager shall, for each planned software peer review or
software inspection, record basic measurements. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

5.4.2 90
The project manager shall establish, record, maintain, report, and utilize
software management and technical measurements. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

5.4.3 93

The project manager shall analyze software measurement data collected
using documented project-specified and/or Center/organizational analysis
procedures. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

5.4.4 94

The project manager shall provide access to the software measurement
data, measurement analyses and software development status as
requested to the sponsoring Mission Directorate, the NASA Chief
Engineer, Center and Headquarters SMA, and Center repositories. Center Level Project X X X

X
*(SC only) HQ OCIO X (not OTS) Center CIO X (not OTS)

Software ClassSoftware Class

Page 67 of 79

 NPR 7150.2B

Appendix D. Software Classifications

D.1 The applicability of requirements in this directive to specific systems and subsystems
containing software is determined through the use of the NASA-wide software classification
structure. Definitions for software classes are defined below, and the designation of the software
as safety critical or non-safety critical in conjunction with the Requirements Mapping and
Compliance Matrix in Appendix C. These definitions are based on (1) usage of the software with
or within a NASA system, (2) criticality of the system to NASA’s major programs and projects,
(3) extent to which humans depend upon the system, (4) developmental and operational
complexity, and (5) extent of the Agency’s investment. Classes A through E cover engineering-
related software in decreasing order of this directive’s applicable requirements. Classes F through
H cover business and IT software in decreasing order of applicable NPR 7120.7 requirements.
Using the Requirements Mapping and Compliance Matrix, the number of applicable requirements
and their associated rigor are scaled back for lower software classes and software designated as
non-safety critical. Situations in which a project contains separate systems and subsystems having
different software classes are not uncommon.

D.2 For a given system or subsystem, software is expected to be uniquely defined within a single
class. If more than one software class appears to apply, then assign the higher of the classes to the
system/subsystem. Any potential discrepancies in classifying software within Classes A through E
are to be resolved using the definitions and the five underlying factors listed in the previous
paragraph. Engineering and Safety and Mission Assurance provide dual Technical Authority
chains for resolving classification issues. The NASA Chief Engineer is the ultimate Technical
Authority for software classification disputes concerning definitions in this NPR.

D.3 Software classification tool details are defined in NASA-HDBK-2203.

Note: The expected applicability of requirements in this NPR to specific systems and
subsystems containing software is determined through the use of the NASA-wide definitions for
software classes in this appendix and the designation of the software as safety-critical or non-
safety critical in conjunction with the Requirements Mapping and Compliance Matrix in
Appendix C. These definitions are based on (1) usage of the software with or within a NASA
system, (2) criticality of the system to NASA’s major programs and projects, (3) extent to
which humans depend upon the system, (4) developmental and operational complexity, and (5)
extent of the Agency’s investment.

http://swehb.nasa.gov/

Page 68 of 79

 NPR 7150.2B

Class A: Human Rated Space Software Systems

a. Definition:

1. Human Space Flight Software Systems*: Ground and flight software systems developed and/or
operated by or for NASA needed to perform a primary mission objective of human space flight
and directly interact with human space flight systems. Limited to software required to perform
"vehicle, crew, or primary mission function," as defined by software that is:

(a) Required to operate the vehicle or space asset (e.g., spacesuit, rover, or outpost), including
commanding of the vehicle or asset,

(b) Required to sustain a safe, habitable1 environment for the crew,

(c) Required to achieve the primary mission objectives, or

(d) Required to directly prepare resources (e.g., data, fuel, power) that are consumed by the above
functions.

*Includes software involving launch, on-orbit, in space, surface operations, and entry, descent, and
landing.

b. Examples:

Examples of Class A software (human-rated space flight) include, but are not limited to, the
mission phases listed below.

1. During Launch:
Abort modes and selection; separation control; range safety; crew interface (display and controls);
crew escape; critical systems monitoring and control; guidance, navigation, and control; and
communication and tracking.

2. On Orbit/In Space:
Extra vehicular activity (EVA); control of electrical power; payload control (including suppression
of hazardous satellite and device commands); critical systems monitoring and control; guidance,
navigation, and control; life support systems; crew escape; rendezvous and docking; failure
detection; isolation and recovery; communication and tracking; and mission operations.

1 Current standards that address habitability and environmental health, including atmospheric composition and
pressure, air, and water quality and monitoring, acceleration, acoustics, vibration, radiation, thermal environment,
combined environmental effects, and human factors, are documented in NASA-STD-3001, Vol. 2 - NASA Space
Flight Human System Standard: Human Factors, Habitability, and Environmental Health.

3. On Ground:
Pre-launch and launch operations; Mission Control Center (and Launch Control Center) front-end
processors; spacecraft commanding; vehicle processing operations; re-entry operations; flight

Page 69 of 79

 NPR 7150.2B

dynamics simulators used for ascent abort calls; and launch and flight controller stations for
manned spaceflight.

4. Entry, Descent, and Landing (EDL):
Command and control; aero-surface control; power; thermal; fault protection; and communication
and tracking.

5. Surface Operations:
Planet/lunar surface EVA and communication and tracking.

c. Exclusions:

Class A does not include:

1. Software that happens to fly in space but is superfluous to mission objectives (e.g., software
contained in an iPod carried on board by an astronaut for personal use);

2. Software that exclusively supports aeronautics, research and technology, and science conducted
without space flight applications; or

3. Systems (e.g., simulators, emulators, stimulators, facilities) used to test Class A systems
containing software in a development environment.

Page 70 of 79

 NPR 7150.2B

Class B: Non-Human Space Rated Software Systems or Large Scale Aeronautics Vehicles

a. Definitions:

1. Space Systems involve flight and ground software that should perform reliably to accomplish
primary mission objectives or major function(s) in non-human space rated systems. Included is
software involving launch, on orbit, in space, surface operations, entry, descent, and landing.
These systems are limited to software that is:

(a) Required to operate the vehicle or space asset (e.g., orbiter, lander, probe, flyby spacecraft,
rover, launch vehicle, or primary instrument) such as commanding of the vehicle or asset,

(b) Required to achieve the primary mission objectives, or

(c) Required to directly prepare resources (data, fuel, power) that are consumed by the above
functions.

2. Airborne Vehicles include large scale1 aeronautic vehicles unique to NASA in which the
software:

(a) Is integral to the control of an airborne vehicle,

(b) Monitors and controls the cabin environment, or

(c) Monitors and controls the vehicle’s emergency systems.

This definition includes software for vehicles classified as “test,” “experimental,” or
“demonstration” that meets the above definition for Class B software. Also included are systems
in a test or demonstration where the software’s known and scheduled intended use is to be part of
a Class A or B software system.

1 Large-scale (life-cycle cost exceeding $250M) fully integrated technology development system –
see NPR 7120.8, section 5.1.1.1.

b. Examples:

Examples of Class B software include, but are not limited to:

1. Space, Launch, Ground, EDL, and Surface Systems:
Propulsion systems; power systems; guidance navigation and control; fault protection; thermal
systems; command and control ground systems; planetary/lunar surface operations; hazard
prevention; primary instruments; science sequencing engine; simulations that create operational
EDL parameters; subsystems that could cause the loss of science return from multiple instruments;
flight dynamics and related data; and launch and flight controller stations for non-human space
flight.

Page 71 of 79

 NPR 7150.2B

2. Aeronautics Vehicles (Large Scale NASA Unique):
Guidance, navigation, and control; flight management systems; autopilot; propulsion systems;
power systems; emergency systems (e.g., fire suppression systems, emergency egress systems,
emergency oxygen supply systems, traffic/ground collision avoidance system); and cabin pressure
and temperature control.

c. Exclusions:

Class B does not include

1. Software that exclusively supports non-primary instruments on non-human space rated systems
(e.g., low cost non-primary university supplied instruments), or

2. Systems (e.g., simulators emulators, stimulators, facilities) used in testing Class B systems
containing software in a development environment.

Page 72 of 79

 NPR 7150.2B

Class C: Mission Support Software or Aeronautic Vehicles, or Major Engineering/Research
Facility Software

a. Definition:

1. Space Systems include the following types of software:

(a) Flight or ground software necessary for the science return from a single (non-primary)
instrument,

(b) Flight or ground software used to analyze or process mission data,

(c) Other software for which a defect could adversely impact attainment of some secondary
mission objectives or cause operational problems,

(d) Software used for the testing of space assets,

(e) Software used to verify system requirements of space assets by analysis, or

(f) Software for space flight operations that are not covered by Class A or B software.

2. Airborne Vehicles include systems for non-large scale aeronautic vehicles in which the
software:

(a) Is integral to the control of an airborne vehicle,

(b) Monitors and controls the cabin environment, or

(c) Monitors and controls the vehicle’s emergency system.

Also included are systems on an airborne vehicle (including large scale vehicles) that acquire,
store, or transmit the official record copy of flight or test data.

3. Major Engineering/Research Facility is systems that operate a major facility for research,
development, test, or evaluation (e.g., facility controls and monitoring, systems that operate
facility-owned instruments, apparatus, and data acquisition equipment).

b. Examples:

Examples of Class C software include, but are not limited to:

1. Space Systems:
Software that supports prelaunch integration and test; mission data processing and analysis;
analysis software used in trend analysis and calibration of flight engineering parameters;
primary/major science data collection storage and distribution systems (e.g., Distributed Active
Archive Centers); simulators, emulators, stimulators, or facilities used to test Class A, B, or C
software in a development; integration and test environments (development environment,
including environments used from unit testing through validation testing); software used to verify

Page 73 of 79

 NPR 7150.2B

system-level requirements associated with Class A, B, or C software by analysis (e.g., guidance,
navigation, and control system performance verification by analysis); simulators used for mission
training; software employed by network operations and control (which is redundant with systems
used at tracking complexes); command and control of non-primary instruments; and ground
mission support software used for secondary mission objectives, real-time analysis, and planning
(e.g., monitoring, consumables analysis, mission planning).

2. Aeronautics Vehicles:
Guidance, navigation, and control; flight management systems; autopilot; propulsion systems;
power systems; emergency systems (e.g., fire suppression systems, emergency egress systems,
emergency oxygen supply systems, traffic/ground collision avoidance system); cabin pressure and
temperature control; in-flight telescope control software; aviation data integration systems; and
automated flight planning systems and primary/major science data collection storage and
distribution systems (e.g., Distributed Active Archive Centers).

3. Major Engineering/Research Facility:
Major Center facilities; data acquisition and control systems for wind tunnels, vacuum chambers,
and rocket engine test stands; ground-based software used to operate a major facility telescope;
and major aeronautic applications facilities (e.g., air traffic management systems; high fidelity
motion based simulators).

c. Exclusions:

Systems unique to a research, development, test, or evaluation activity in a major
engineering/research facility or airborne vehicle in which the system is not part of the facility or
vehicle and does not impact the operation of the facility or vehicle.

Page 74 of 79

 NPR 7150.2B

Class D: Basic Science/Engineering Design and Research and Technology Software

a. Definitions:

1. Basic Science/Engineering Design includes:

(a) Ground software that performs secondary science data analysis,

(b) Ground software tools that support engineering development,

(c) Ground software used in testing other Class D software systems,

(d) Ground software tools that support mission planning or formulation,

(e) Ground software that operates a research, development, test, or evaluation laboratory (i.e., not
a major engineering/research facility), or

(f) Ground software that provides decision support for non-mission critical situations.

2. Airborne Vehicle Systems include:

(a) Software whose anomalous behavior would cause or contribute to a failure of system function
resulting in a minor failure condition for the airborne vehicle (e.g., the Software Considerations in
Airborne System and Equipment Certification, DO-178B, “Class D”),

(b) Software whose anomalous behavior would cause or contribute to a failure of system function
with no effect on airborne vehicle operational capability or pilot workload (e.g., the Software
Considerations in Airborne System and Equipment Certification, DO-178B, “Class E”), or

(c) Ground software tools that perform research associated with airborne vehicles or systems.

3. Major Engineering/Research Facility related software includes research software that executes
in a major engineering/research facility but is independent of the operation of the facility.

b. Examples:

Examples of Class D software include, but are not limited to:

1. Basic Science and Engineering Design:
Engineering design and modeling tools (e.g., computer-aided design and computer-aided
manufacturing (CAD/CAM), thermal/structural analysis tools); project assurance databases (e.g.,
problem reporting, analysis, and corrective action system, requirements management databases);
propulsion integrated design tools; integrated build management systems; inventory management
tools; probabilistic engineering analysis tools; test stand data analysis tools; test stand engineering
support tools; experimental flight displays evaluated in a flight simulator; and tools used to
develop design reference missions to support early mission planning.

Page 75 of 79

 NPR 7150.2B

2. Airborne Vehicles:
Software tools for designing advanced human-automation systems; experimental synthetic-vision
display; and cloud-aerosol light detection and ranging installed on an aeronautics vehicle.

c. Exclusions:

Class D does not include:

1. Software that can impact primary or secondary mission objectives or cause loss of data that is
generated by space systems,

2. Software that operates a major engineering/research facility,

3. Software that operates an airborne vehicle, or

4. Space flight software (i.e., software that meets the space flight portions of Class A, B, or C
Software Classifications).

Page 76 of 79

 NPR 7150.2B

Class E: Design Concept and Research and Technology Software

a. Definition:

1. Software developed to explore a design concept or hypothesis but not used to make decisions
for an operational Class A, B, or C system or to-be-built Class A, B, or C system, or

2. Software used to perform minor desktop analyses of science or experimental data. Class E
software cannot be safety-critical software. If the software is classified as safety-critical software,
then it has to be classified as Class D or higher.

b. Examples:

Examples of Class E software include, but are not limited to, parametric models to estimate
performance or other attributes of design concepts; software to explore correlations between data
sets; line of code counters; file format converters; and document template builders.

c. Exclusions:

Class E does not include:

1. Space flight systems (i.e., software that meets the space flight portions of Class A, B, or C
Software Classifications),

2. Software developed by or for NASA to directly support an operational system (e.g., human-
rated space system, robotics spacecraft, space instrument, airborne vehicle, major
engineering/research facility, mission support facility, and primary/major science data collection
storage and distribution systems),

3. Software developed by or for NASA to be flight qualified to support an operational system,

4. Software that directly affects primary or secondary mission objectives,

5. Software that can adversely affect the integrity of engineering/scientific artifacts,

6. Software used in technical decisions concerning operational systems,

7. Software that has an impact on operational vehicles, or

8. Software that is safety critical.

Page 77 of 79

 NPR 7150.2B

Business and Information Technology Infrastructure Software

Class F: General Purpose Computing, Business and IT Software (Multi-Center or Multi-
Program and Project)

a. Definition:

General purpose computing Business and IT software used in support of the Agency, multiple
Centers, or multiple programs and projects, as described for the General Purpose Infrastructure
To-Be Component of the NASA Enterprise Architecture, Volume 5 (To-Be Architecture), and for
the following portfolios: voice, wide-area network, local-area network, video, data Centers,
application services, messaging and collaboration, and public Web. A defect in Class F software is
likely to affect the productivity of multiple users across several geographic locations and may
possibly affect mission objectives or system safety. Mission objectives can be cost, schedule, or
technical objectives for any work that the Agency performs.

b. Examples:

Examples of Class F software include, but are not limited to, agency-wide enterprise applications
(e.g., WebTADS, SAP, eTravel, ePayroll, Business Warehouse), including mobile applications;
agency-wide educational outreach software; software in support of the NASA-wide area network;
and the NASA Web portal.

Class G: General Purpose Computing, Business and IT Software (Single Center or Project)

a. Definition:

General purpose computing, business and IT software used in support of a single Center or
project, as described for locally deployed portions of the General Purpose Infrastructure To-Be
Component of the NASA Enterprise Architecture, Volume 5 (To-Be Architecture) and for the
following portfolios: voice, local-area network, video, data Centers, application services,
messaging and collaboration, and public Web. A defect in Class G software is likely to affect the
productivity of multiple users in a single geographic location or workgroup but is unlikely to
affect mission objectives or system safety.

b. Examples:

Examples of Class G software include, but are not limited to software for Center custom
applications such as Headquarters' Corrective Action Tracking System; Headquarters' User
Request Systems; content management system mobile applications; and Center or project
educational outreach software.

Page 78 of 79

 NPR 7150.2B

Class H: General Purpose Desktop Software

a. Definition:

General purpose desktop software as described for the General Purpose Infrastructure To-Be
Component (Desktop Hardware and Software Portfolio) of the NASA Enterprise Architecture,
Volume 5 (NASA To-Be Architecture). A defect in Class H software may affect the productivity
of a single user or small group of users but generally will not affect mission objectives or system
safety, but a defect in desktop IT security-related software, e.g., anti-virus software, may lead to
loss of functionality and productivity across multiple users and systems.

b. Examples:

Examples of Class H software include, but are not limited to, desktop applications such as word
processing applications, spreadsheet applications, and presentation applications.

Page 79 of 79

 NPR 7150.2B

Appendix E. References

E.1 NASA-STD-3000 Vol. 2 - NASA Space PACE Flight Human System
Standard: Human Factors, Habitability, and
Environmental Health

E.2 NASA-STD-7009 Standard for Models and Simulations
E.3 NASA-STD-8739.9 Software Formal Inspection Standard
E.4 NASA-HDBK-2203 NASA Software Engineering Handbook
E.5 NASA-HDBK-4008 Programmable Logic Devices (PLD) Handbook
E.6 NASA-HDBK-7009 NASA Handbook for Models and Simulations: An

Implementation Guide for NASA-STD-7009
E.7 NASA Software Engineering
Website

https://nen.nasa.gov/web/software/

E.8 NASA Software Process
Across NASA (SPAN) Website

http://span.nasa.gov/

E.9 NASA IV&V Management
System

http://www.nasa.gov/centers/ivv/ims/home/index.html

E.10 NASA/SP-2010-3403 NASA Scheduling Management Handbook
E.11 IEEE 828 IEEE Standard for Configuration Management in

Systems and Software Engineering
E.12 IEEE 1012 IEEE Standard for Software Verification and

Validation
E.13 IEEE 1028 IEEE Standard for Software Reviews and Audits
E.14 ISO/IEC 15939 Systems and Software Engineering-Measurement

Process
E.15 ISO/IEC 24765 Systems and Software Engineering-Vocabulary
E.16 CMU/SEI-2010-TR-033 CMMI for Development, Version 1.3

Software Engineering Institute, Carnegie Mellon
University, 2010

http://swehb.nasa.gov/
https://nen.nasa.gov/web/software
http://www.nasa.gov/centers/ivv/ims/home/index.html
http://shop.ieee.org/ieeestore/
http://shop.ieee.org/ieeestore/

	Preface
	P.1 Purpose
	P.2 Applicability
	P.3 Authority
	P.4 Applicable Documents
	P.5 Measurement/Verification
	P.6 Cancellation

	Chapter 1: Introduction
	1.1 Overview
	a. Chapter 2 describes roles and responsibilities relevant to the requirements in this directive.
	b. Chapter 3 establishes software management requirements.
	c. Chapter 4 provides software engineering life-cycle requirements.
	d. Chapter 5 provides supporting software life-cycle requirements.
	e. Chapter 6 provides recommended software records content.
	f. Appendix A provides definitions.
	g. Appendix B provides acronyms used in this directive.
	h. Appendix C contains the Requirements Mapping and Compliance Matrix.
	i. Appendix D contains software classifications.
	j. Appendix E contains software references for this directive.
	Chapter 2. Responsibilities

	2.1.3.7 The Center Director or designee shall periodically report on the status of the Center’s software engineering discipline, as applied to its projects, to the NASA Office of Chief Engineer and relevant Technical Authorities as requested. [SWE-095]
	2.1.3.9 For Class A, B, C, and safety critical software projects, the Center Director shall establish and maintain a software measurement repository for software project measurements containing at a minimum: [SWE-091]
	a. Software development tracking data.
	b. Software functionality achieved data.
	c. Software quality data.
	d. Software development effort and cost data.
	2.1.3.10 For Class A, B, C, and safety critical software projects, the Center Director shall utilize software measurement data for monitoring software engineering capability, improving software quality, and tracking the status of software engineering ...
	2.1.3.11 Each Center Director shall maintain and implement software training plan(s) to advance its in-house software engineering capability and as a reference for its contractors. [SWE-101]
	2.1.3.12 For Class A, B, and C software projects, each Center Director shall establish and maintain a software cost repository(ies) that contains at least one of the following measures: [SWE-142]
	a. Planned and actual effort and cost.
	b. Planned and actual schedule dates for major milestones.
	c. Both planned and actual values for key cost parameters that typically include software size, requirements count, defects counts for maintenance or sustaining engineering projects, and cost model inputs.
	d. Project descriptors or metadata that typically includes software class, software domain/type, and requirements volatility.
	2.1.3.13 Each Center Director shall contribute applicable software engineering process assets in use at his/her Centers to the Agency-wide process asset library. [SWE-144]
	2.1.3.14 The designated Engineering Technical Authority(s) shall define the content requirements for software documents or records. [SWE-153].
	2.1.4 Center Safety and Mission Assurance (SMA)
	2.1.4.2 The Center SMA will ensure that the project’s software assurance organization performs an independent classification assessment.
	2.1.4.3 The Center SMA will ensure that the project implements software assurance per NASA-STD-8739.8.
	2.1.4.4 The Center SMA will ensure that the project determines the software safety criticality in accordance with NASA-STD-8719.13.
	2.1.4.5 The Center SMA will ensure that when a project is determined to have safety-critical software, that the project implements the requirements of NASA-STD-8719.13.
	2.1.4.6 The Center SMA will approve the project’s Independent Verification and Validation (IV&V) provider’s IV&V Project Execution Plan (IPEP).
	2.1.4.7 The Center SMA will support the project to ensure that acquired, developed, and maintained software, as required by SWE-032, is from an organization with a non-expired CMMI-DEV rating as measured by a CMMI Institute authorized or certified le...
	2.1.4.8 The Center SMA will support the Center organizations in maintaining the NASA organization’s CMMI-DEV ratings.
	2.1.5 Program and Project Managers
	2.2 Principles Related to Tailoring Requirements
	Chapter 3: Software Management Requirements
	3.1 Software Life Cycle Planning
	3.9 Use of Commercial, Government, Legacy, Heritage, and Modified Off-the-Shelf Software
	3.11 Software Development Processes
	3.14 Software Reuse
	3.15 Open Source

	Chapter 4: Software Engineering Life-Cycle Requirements
	4.1 Software Requirements
	4.3 Software Design
	4.4 Software Implementation
	4.5 Software Testing
	4.6 Software Operations, Maintenance, and Retirement

	Chapter 5: Supporting Software Life-Cycle Requirements
	5.1 Software Configuration Management (SCM)
	5.2 Software Risk Management
	5.3 Software Peer Reviews and Inspections
	5.4 Software Measurement

	Chapter 6: Recommended Software Records Content
	Appendix A. Definitions
	Appendix B. Acronyms
	Appendix C. Requirements Mapping and Compliance Matrix
	Appendix D. Software Classifications
	Appendix E. References

